Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.database.query |
Database queries - computing distances, neighbors, similarities - API and general documentation.
|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.external |
Distance functions using external data sources.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.distancevalue |
Distance values, i.e. object storing an actual distance value along with
comparison functions and value parsers.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.result.optics |
Result classes for OPTICS.
|
Modifier and Type | Field and Description |
---|---|
protected DoubleDistance |
AbstractProjectedDBSCAN.epsilon
Holds the value of
AbstractProjectedDBSCAN.EPSILON_ID . |
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.distanceFunction
The euclidean distance function.
|
Modifier and Type | Method and Description |
---|---|
protected DistanceFunction<? super V,DoubleDistance> |
AbstractProjectedClustering.getDistanceFunction()
Returns the distance function.
|
protected DistanceQuery<V,DoubleDistance> |
AbstractProjectedClustering.getDistanceQuery(Database database)
Returns the distance function.
|
Modifier and Type | Method and Description |
---|---|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractProjectedDBSCAN.expandCluster(LocallyWeightedDistanceFunction.Instance<V> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
ExpandCluster function of DBSCAN.
|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
protected void |
OPTICS.expandClusterOrderDouble(ClusterOrderResult<DoubleDistance> clusterOrder,
Database database,
RangeQuery<O,DoubleDistance> rangeQuery,
DBID objectID,
DoubleDistance epsilon,
FiniteProgress progress)
OPTICS-function expandClusterOrder.
|
Constructor and Description |
---|
AbstractProjectedDBSCAN(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DoubleDistance |
ORCLUS.ProjectedEnergy.projectedEnergy |
Modifier and Type | Method and Description |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its
closest seed.
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality
dim for the
specified cluster. |
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new
|
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters.
|
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters.
|
Constructor and Description |
---|
FourC(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor.
|
ORCLUS.ProjectedEnergy(int i,
int j,
ORCLUS.ORCLUSCluster cluster,
DoubleDistance projectedEnergy) |
Modifier and Type | Field and Description |
---|---|
private DoubleDistance |
SUBCLU.epsilon
Holds the value of
SUBCLU.EPSILON_ID . |
protected DoubleDistance |
SUBCLU.Parameterizer.epsilon |
Modifier and Type | Method and Description |
---|---|
private DoubleDistance |
PROCLUS.manhattanSegmentalDistance(V o1,
V o2,
Set<Integer> dimensions)
Returns the Manhattan segmental distance between o1 and o2 relative to the
specified dimensions.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private ModifiableDBIDs |
PROCLUS.greedy(DistanceQuery<V,DoubleDistance> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set.
|
Constructor and Description |
---|
PreDeCon(DoubleDistance epsilon,
int minpts,
LocallyWeightedDistanceFunction<V> distanceFunction,
int lambda)
Constructor.
|
SUBCLU(AbstractDimensionsSelectingDoubleDistanceFunction<V> distanceFunction,
DoubleDistance epsilon,
int minpts)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private PrimitiveSimilarityFunction<? super V,DoubleDistance> |
ABOD.primitiveKernelFunction
Store the configured Kernel version
|
protected PrimitiveSimilarityFunction<V,DoubleDistance> |
ABOD.Parameterizer.primitiveKernelFunction |
Modifier and Type | Method and Description |
---|---|
private KNNList<DoubleDistance> |
SOD.getKNN(Relation<V> database,
SimilarityQuery<V,IntegerDistance> snnInstance,
DBID queryObject)
Provides the k nearest neighbors in terms of the shared nearest neighbor
distance.
|
Constructor and Description |
---|
ABOD(int k,
int sampleSize,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters.
|
ABOD(int k,
int sampleSize,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters.
|
ABOD(int k,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters.
|
ABOD(int k,
PrimitiveSimilarityFunction<? super V,DoubleDistance> primitiveKernelFunction,
DistanceFunction<V,DoubleDistance> distanceFunction)
Actual constructor, with parameters.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceResultPair.getDistance() |
DoubleDistance |
DoubleDistanceResultPair.getFirst()
Deprecated.
Use
DoubleDistanceResultPair.getDoubleDistance() or DoubleDistanceResultPair.getDistance() for clearness. |
Modifier and Type | Method and Description |
---|---|
void |
DoubleDistanceResultPair.setDistance(DoubleDistance distance) |
Modifier and Type | Method and Description |
---|---|
int |
DoubleDistanceResultPair.compareByDistance(DistanceResultPair<DoubleDistance> o) |
int |
DoubleDistanceResultPair.compareTo(DistanceResultPair<DoubleDistance> o) |
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
protected void |
LinearScanRawDoubleDistanceKNNQuery.linearScanBatchKNN(List<O> objs,
List<KNNHeap<DoubleDistance>> heaps) |
Constructor and Description |
---|
LinearScanRawDoubleDistanceKNNQuery(PrimitiveDistanceQuery<O,DoubleDistance> distanceQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range) |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range) |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Constructor and Description |
---|
LinearScanRawDoubleDistanceRangeQuery(DistanceQuery<O,DoubleDistance> distanceQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
SquaredEuclideanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
ManhattanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
EuclideanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
MaximumDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
MinimumDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.Instance.distance(DBID id1,
DBID id2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.distance(DBID id1,
DBID id2)
Computes the distance between two given real vectors according to this
distance function.
|
DoubleDistance |
RandomStableDistanceFunction.distance(DBID o1,
DBID o2) |
DoubleDistance |
AbstractVectorDoubleDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.distance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
AbstractVectorDoubleDistanceFunction.getDistanceFactory() |
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.getDistanceFactory() |
DoubleDistance |
SharedNearestNeighborJaccardDistanceFunction.Instance.getDistanceFactory() |
DoubleDistance |
LocallyWeightedDistanceFunction.getDistanceFactory() |
DoubleDistance |
RandomStableDistanceFunction.getDistanceFactory() |
DoubleDistance |
SquaredEuclideanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
ManhattanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
EuclideanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
MaximumDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
MinimumDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
LocallyWeightedDistanceFunction.Instance.minDistBROKEN(SpatialComparable mbr,
V v) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
AbstractCosineDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
ManhattanDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
EuclideanDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
MaximumDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
MinimumDistanceFunction.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
AbstractSimilarityAdapter.Instance.distance(DBID id1,
DBID id2) |
DoubleDistance |
AbstractSimilarityAdapter.getDistanceFactory() |
DoubleDistance |
AbstractSimilarityAdapter.Instance.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
abstract <T extends O> |
AbstractSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
SimilarityAdapterLn.instantiate(Relation<T> database) |
<T extends O> |
SimilarityAdapterLinear.instantiate(Relation<T> database) |
<T extends O> |
SimilarityAdapterArccos.instantiate(Relation<T> database) |
Constructor and Description |
---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
SimilarityAdapterArccos.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
SimilarityAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
SimilarityAdapterLn.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
HistogramIntersectionDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
HistogramIntersectionDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation) |
Modifier and Type | Field and Description |
---|---|
private Map<DBIDPair,DoubleDistance> |
FileBasedDoubleDistanceFunction.cache
The distance cache
|
protected DistanceParser<DoubleDistance> |
FileBasedDoubleDistanceFunction.Parameterizer.parser |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
FileBasedDoubleDistanceFunction.distance(DBID id1,
DBID id2)
Returns the distance between the two objects specified by their objects
ids.
|
DoubleDistance |
DiskCacheBasedDoubleDistanceFunction.distance(DBID id1,
DBID id2)
Returns the distance between the two objects specified by their objects
ids.
|
DoubleDistance |
FileBasedDoubleDistanceFunction.getDistanceFactory() |
DoubleDistance |
DiskCacheBasedDoubleDistanceFunction.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
private void |
FileBasedDoubleDistanceFunction.loadCache(DistanceParser<DoubleDistance> parser,
File matrixfile) |
Constructor and Description |
---|
FileBasedDoubleDistanceFunction(DistanceParser<DoubleDistance> parser,
File matrixfile)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DimensionsSelectingEuclideanDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
DimensionSelectingDistanceFunction.centerDistance(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
DimensionSelectingDistanceFunction.distance(NumberVector<?,?> o1,
NumberVector<?,?> o2) |
DoubleDistance |
AbstractDimensionsSelectingDoubleDistanceFunction.distance(V o1,
V o2) |
DoubleDistance |
AbstractDimensionsSelectingDoubleDistanceFunction.getDistanceFactory() |
DoubleDistance |
DimensionSelectingDistanceFunction.getDistanceFactory() |
DoubleDistance |
DimensionsSelectingEuclideanDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
DoubleDistance |
DimensionSelectingDistanceFunction.minDist(SpatialComparable mbr1,
SpatialComparable mbr2) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?,?>> |
DimensionSelectingDistanceFunction.instantiate(Relation<T> database) |
Modifier and Type | Field and Description |
---|---|
static DoubleDistance |
DoubleDistance.FACTORY
The static factory instance
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistance.fromDouble(double val) |
DoubleDistance |
DoubleDistance.infiniteDistance()
An infinite DoubleDistance is based on
Double.POSITIVE_INFINITY . |
DoubleDistance |
DoubleDistance.minus(DoubleDistance distance) |
DoubleDistance |
DoubleDistance.nullDistance()
A null DoubleDistance is based on 0.
|
DoubleDistance |
DoubleDistance.parseString(String val)
As pattern is required a String defining a Double.
|
DoubleDistance |
DoubleDistance.plus(DoubleDistance distance) |
DoubleDistance |
DoubleDistance.times(double lambda)
Returns a new distance as the product of this distance and the given double
value.
|
DoubleDistance |
DoubleDistance.times(DoubleDistance distance)
Returns a new distance as the product of this distance and the given
distance.
|
DoubleDistance |
DoubleDistance.undefinedDistance()
An undefined DoubleDistance is based on
Double.NaN . |
Modifier and Type | Method and Description |
---|---|
int |
DoubleDistance.compareTo(DoubleDistance other) |
DoubleDistance |
DoubleDistance.minus(DoubleDistance distance) |
DoubleDistance |
DoubleDistance.plus(DoubleDistance distance) |
DoubleDistance |
DoubleDistance.times(DoubleDistance distance)
Returns a new distance as the product of this distance and the given
distance.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.getDistanceFactory() |
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.Instance.getDistanceFactory() |
DoubleDistance |
FractionalSharedNearestNeighborSimilarityFunction.Instance.similarity(DBID id1,
DBID id2) |
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
FooKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2) |
DoubleDistance |
PolynomialKernelFunction.distance(NumberVector<?,?> fv1,
NumberVector<?,?> fv2) |
DoubleDistance |
LinearKernelFunction.distance(O fv1,
O fv2) |
DoubleDistance |
FooKernelFunction.getDistanceFactory() |
DoubleDistance |
LinearKernelFunction.getDistanceFactory() |
DoubleDistance |
PolynomialKernelFunction.getDistanceFactory() |
DoubleDistance |
FooKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides an experimental kernel similarity between the given two vectors.
|
DoubleDistance |
PolynomialKernelFunction.similarity(NumberVector<?,?> o1,
NumberVector<?,?> o2)
Provides the linear kernel similarity between the given two vectors.
|
DoubleDistance |
LinearKernelFunction.similarity(O o1,
O o2)
Provides a linear Kernel function that computes a similarity between the
two feature vectors V1 and V2 definded by V1^T*V2
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
FooKernelFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?,?>> |
PolynomialKernelFunction.instantiate(Relation<T> database) |
<T extends O> |
LinearKernelFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database)
Deprecated.
ID mapping is not reliable!
|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database,
ArrayDBIDs ids)
Provides a new kernel matrix.
|
Modifier and Type | Field and Description |
---|---|
private DoubleDistance |
RangeQueryFilteredPCAIndex.epsilon
Query epsilon
|
protected DoubleDistance |
RangeQueryFilteredPCAIndex.Factory.epsilon
Holds the value of
RangeQueryFilteredPCAIndex.Factory.EPSILON_ID . |
protected DoubleDistance |
RangeQueryFilteredPCAIndex.Factory.Parameterizer.epsilon |
Modifier and Type | Field and Description |
---|---|
private KNNQuery<NV,DoubleDistance> |
KNNQueryFilteredPCAIndex.knnQuery
The kNN query instance we use
|
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
protected DistanceFunction<NV,DoubleDistance> |
AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
private RangeQuery<NV,DoubleDistance> |
RangeQueryFilteredPCAIndex.rangeQuery
The kNN query instance we use
|
Modifier and Type | Method and Description |
---|---|
protected abstract List<DistanceResultPair<DoubleDistance>> |
AbstractFilteredPCAIndex.objectsForPCA(DBID id)
Returns the objects to be considered within the PCA for the specified query
object.
|
protected List<DistanceResultPair<DoubleDistance>> |
KNNQueryFilteredPCAIndex.objectsForPCA(DBID id) |
protected List<DistanceResultPair<DoubleDistance>> |
RangeQueryFilteredPCAIndex.objectsForPCA(DBID id) |
Constructor and Description |
---|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor.
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor.
|
Constructor and Description |
---|
AbstractFilteredPCAIndex.Factory(DistanceFunction<NV,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<NV> pca)
Constructor.
|
KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
Integer k)
Constructor.
|
KNNQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor.
|
RangeQueryFilteredPCAIndex.Factory(DistanceFunction<V,DoubleDistance> pcaDistanceFunction,
PCAFilteredRunner<V> pca,
DoubleDistance epsilon)
Constructor.
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
static DoubleDistance |
DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON
The default value for epsilon.
|
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.epsilon
The epsilon value for each dimension;
|
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.Factory.epsilon
The epsilon value for each dimension;
|
protected DoubleDistance[] |
DiSHPreferenceVectorIndex.Factory.Parameterizer.epsilon
The epsilon value for each dimension;
|
Constructor and Description |
---|
DiSHPreferenceVectorIndex.Factory(DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor.
|
DiSHPreferenceVectorIndex(Relation<V> relation,
DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceRStarTreeKNNQuery.getDistanceFactory() |
Modifier and Type | Method and Description |
---|---|
protected List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.doRangeQuery(O object,
double epsilon)
Perform the actual query process.
|
List<List<DistanceResultPair<DoubleDistance>>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForObject(O obj,
int k) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
protected void |
DoubleDistanceRStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node,
Map<DBID,KNNHeap<DoubleDistance>> knnLists)
Performs a batch knn query.
|
protected void |
DoubleDistanceRStarTreeKNNQuery.doKNNQuery(O object,
KNNHeap<DoubleDistance> knnList)
Performs a k-nearest neighbor query for the given NumberVector with the
given parameter k and the according distance function.
|
void |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkHeaps(Map<DBID,KNNHeap<DoubleDistance>> heaps) |
Constructor and Description |
---|
DoubleDistanceRStarTreeKNNQuery(AbstractRStarTree<?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor.
|
DoubleDistanceRStarTreeRangeQuery(AbstractRStarTree<?,?> tree,
DistanceQuery<O,DoubleDistance> distanceQuery,
SpatialPrimitiveDoubleDistanceFunction<? super O> distanceFunction)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private PrimitiveDistanceFunction<? super V,DoubleDistance> |
WeightedCovarianceMatrixBuilder.weightDistance
Holds the distance function used for weight calculation
|
Modifier and Type | Method and Description |
---|---|
DoubleDistance |
DoubleDistanceClusterOrderEntry.getReachability()
Returns the reachability distance of this entry
|
Modifier and Type | Method and Description |
---|---|
int |
DoubleDistanceClusterOrderEntry.compareTo(ClusterOrderEntry<DoubleDistance> o) |