Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.weighted |
Weighted Neighborhood definitions.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.visualization |
Visualization applications in ELKI.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.query |
Database queries - computing distances, neighbors, similarities - API and general documentation.
|
de.lmu.ifi.dbs.elki.database.query.distance |
Prepared queries for distances.
|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries.
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.similarity |
Prepared queries for similarity functions.
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views).
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.roc |
Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve)
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index |
Index structure implementations
|
de.lmu.ifi.dbs.elki.index.preprocessed |
Index structure based on preprocessors
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.preprocessed.snn |
Indexes providing nearest neighbor sets
|
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
Index using a preprocessed local subspaces.
|
de.lmu.ifi.dbs.elki.index.tree |
Tree-based index structures
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.spacefillingcurves |
Space filling curves.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.optics |
Result classes for OPTICS.
|
de.lmu.ifi.dbs.elki.result.outlier |
Outlier result classes
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.referencepoints |
Package containing strategies to obtain reference points
Shared code for various algorithms that use reference points.
|
de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.gui |
Package to provide a visualization GUI.
|
de.lmu.ifi.dbs.elki.visualization.projector |
Projectors are responsible for finding appropriate projections for data relations.
|
de.lmu.ifi.dbs.elki.visualization.scales |
Scales handling for plotting.
|
de.lmu.ifi.dbs.elki.visualization.visualizers |
Visualizers for various results
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
Visualizers based on 1D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
Visualizers based on 2D projections.
|
Modifier and Type | Method and Description |
---|---|
protected BitSet[] |
APRIORI.frequentItemsets(Map<BitSet,Integer> support,
BitSet[] candidates,
Relation<BitVector> database)
Returns the frequent BitSets out of the given BitSets with respect to the
given database.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids)
Runs the pca on the given set of IDs.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids,
V centroidDV)
Runs the pca on the given set of IDs and for the given centroid.
|
AprioriResult |
APRIORI.run(Database database,
Relation<BitVector> relation)
Performs the APRIORI algorithm on the given database.
|
Result |
DummyAlgorithm.run(Database database,
Relation<O> relation)
Run the algorithm.
|
KNNDistanceOrderResult<D> |
KNNDistanceOrder.run(Database database,
Relation<O> relation)
Provides an order of the kNN-distances for all objects within the specified
database.
|
CollectionResult<CTriple<DBID,DBID,Double>> |
MaterializeDistances.run(Database database,
Relation<O> relation)
Iterates over all points in the database.
|
DataStore<KNNList<D>> |
KNNJoin.run(Database database,
Relation<V> relation)
Joins in the given spatial database to each object its k-nearest neighbors.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.run(Database database,
Relation<V> relation)
Computes quantitatively linear dependencies among the attributes of the
given database based on a linear correlation PCA.
|
Modifier and Type | Method and Description |
---|---|
protected double |
EM.assignProbabilitiesToInstances(Relation<V> database,
List<Double> normDistrFactor,
List<V> means,
List<Matrix> invCovMatr,
List<Double> clusterWeights,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
private Clustering<OPTICSModel> |
OPTICSXi.extractClusters(ClusterOrderResult<N> clusterOrderResult,
Relation<?> relation,
double ixi,
int minpts)
Extract clusters from a cluster order result.
|
private DBID |
DeLiClu.getStartObject(Relation<NV> relation)
Returns the id of the start object for the run method.
|
protected List<V> |
EM.initialMeans(Relation<V> relation)
Creates
k random points distributed uniformly within the
attribute ranges of the given database. |
protected List<V> |
KMeans.means(List<? extends ModifiableDBIDs> clusters,
List<V> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database.
|
Clustering<OPTICSModel> |
OPTICSXi.run(Database database,
Relation<?> relation) |
ClusterOrderResult<D> |
DeLiClu.run(Database database,
Relation<NV> relation) |
ClusterOrderResult<D> |
OPTICS.run(Database database,
Relation<O> relation)
Run OPTICS on the database.
|
Result |
SLINK.run(Database database,
Relation<O> relation)
Performs the SLINK algorithm on the given database.
|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<Model> |
DBSCAN.run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Clustering<MeanModel<V>> |
KMeans.run(Database database,
Relation<V> relation)
Run k-means
|
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation) |
Clustering<EMModel<V>> |
EM.run(Database database,
Relation<V> relation)
Performs the EM clustering algorithm on the given database.
|
protected List<? extends ModifiableDBIDs> |
KMeans.sort(List<V> means,
Relation<V> database)
Returns a list of clusters.
|
Modifier and Type | Field and Description |
---|---|
private Relation<ParameterizationFunction> |
CASH.fulldatabase
The entire database
|
Modifier and Type | Method and Description |
---|---|
private void |
ORCLUS.assign(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters)
Creates a partitioning of the database by assigning each object to its
closest seed.
|
private MaterializedRelation<ParameterizationFunction> |
CASH.buildDB(int dim,
Matrix basis,
DBIDs ids,
Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
the specified subspace.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
CASHInterval interval)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private double[] |
CASH.determineMinMaxDistance(Relation<ParameterizationFunction> relation,
int dimensionality)
Determines the minimum and maximum function value of all parameterization
functions stored in the specified database.
|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality
dim for the
specified cluster. |
private void |
CASH.initHeap(Heap<IntegerPriorityObject<CASHInterval>> heap,
Relation<ParameterizationFunction> relation,
int dim,
DBIDs ids)
Initializes the heap with the root intervals.
|
private List<ORCLUS.ORCLUSCluster> |
ORCLUS.initialSeeds(Relation<V> database,
int k)
Initializes the list of seeds wit a random sample of size k.
|
private void |
ORCLUS.merge(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
List<ORCLUS.ORCLUSCluster> clusters,
int k_new,
int d_new,
IndefiniteProgress cprogress)
Reduces the number of seeds to k_new
|
private ORCLUS.ProjectedEnergy |
ORCLUS.projectedEnergy(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c_i,
ORCLUS.ORCLUSCluster c_j,
int i,
int j,
int dim)
Computes the projected energy of the specified clusters.
|
Clustering<Model> |
CASH.run(Database database,
Relation<ParameterizationFunction> relation)
Run CASH on the relation.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database.
|
Clustering<CorrelationModel<V>> |
ERiC.run(Relation<V> relation)
Performs the ERiC algorithm on the given database.
|
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
private LinearEquationSystem |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dimensionality,
DBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result.
|
private ORCLUS.ORCLUSCluster |
ORCLUS.union(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster c1,
ORCLUS.ORCLUSCluster c2,
int dim)
Returns the union of the two specified clusters.
|
Modifier and Type | Field and Description |
---|---|
private Relation<ParameterizationFunction> |
CASHIntervalSplit.database
The database storing the parameterization functions.
|
Constructor and Description |
---|
CASHIntervalSplit(Relation<ParameterizationFunction> database,
int minPts)
Initializes the logger and sets the debug status to the given value.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,PROCLUS.PROCLUSCluster> |
PROCLUS.assignPoints(Map<DBID,Set<Integer>> dimensions,
Relation<V> database)
Assigns the objects to the clusters.
|
private double |
PROCLUS.avgDistance(V centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the
specified dimension.
|
private void |
DiSH.buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
private void |
DiSH.checkClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap,
int minpts)
Removes the clusters with size < minpts from the cluster map and adds them
to their parents.
|
private Clustering<SubspaceModel<V>> |
DiSH.computeClusters(Relation<V> database,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder,
DiSHDistanceFunction.Instance<V> distFunc)
Computes the hierarchical clusters according to the cluster order.
|
private double |
PROCLUS.evaluateClusters(Map<DBID,PROCLUS.PROCLUSCluster> clusters,
Map<DBID,Set<Integer>> dimensions,
Relation<V> database)
Evaluates the quality of the clusters.
|
private Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> |
DiSH.extractClusters(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder)
Extracts the clusters from the cluster order.
|
private List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(List<Pair<V,Set<Integer>>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
private List<CLIQUESubspace<V>> |
CLIQUE.findDenseSubspaceCandidates(Relation<V> database,
List<CLIQUESubspace<V>> denseSubspaces)
Determines the
k -dimensional dense subspace candidates from the
specified (k-1) -dimensional dense subspaces. |
private List<CLIQUESubspace<V>> |
CLIQUE.findDenseSubspaces(Relation<V> database,
List<CLIQUESubspace<V>> denseSubspaces)
Determines the
k -dimensional dense subspaces and performs a pruning
if this option is chosen. |
private Map<DBID,Set<Integer>> |
PROCLUS.findDimensions(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
private List<Pair<V,Set<Integer>>> |
PROCLUS.findDimensions(List<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
private List<CLIQUESubspace<V>> |
CLIQUE.findOneDimensionalDenseSubspaceCandidates(Relation<V> database)
Determines the one-dimensional dense subspace candidates by making a pass
over the database.
|
private List<CLIQUESubspace<V>> |
CLIQUE.findOneDimensionalDenseSubspaces(Relation<V> database)
Determines the one dimensional dense subspaces and performs a pruning if
this option is chosen.
|
private Pair<BitSet,ArrayModifiableDBIDs> |
DiSH.findParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Pair<BitSet,ArrayModifiableDBIDs> child,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns the parent of the specified cluster
|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private Collection<CLIQUEUnit<V>> |
CLIQUE.initOneDimensionalUnits(Relation<V> database)
Initializes and returns the one dimensional units.
|
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
List<Cluster<SubspaceModel<V>>> children)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Clustering<SubspaceModel<V>> |
DiSH.run(Database database,
Relation<V> relation)
Performs the DiSH algorithm on the given database.
|
Clustering<Model> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
SUBCLU.run(Relation<V> relation)
Performs the SUBCLU algorithm on the given database.
|
Clustering<SubspaceModel<V>> |
CLIQUE.run(Relation<V> relation)
Performs the CLIQUE algorithm on the given database.
|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace<V> subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
private List<Cluster<SubspaceModel<V>>> |
DiSH.sortClusters(Relation<V> database,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
descending order.
|
Modifier and Type | Method and Description |
---|---|
private HashMap<String,ModifiableDBIDs> |
ByLabelClustering.multipleAssignment(Relation<?> data)
Assigns the objects of the database to multiple clusters according to their
labels.
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
private HashMap<String,ModifiableDBIDs> |
ByLabelClustering.singleAssignment(Relation<?> data)
Assigns the objects of the database to single clusters according to their
labels.
|
Modifier and Type | Class and Description |
---|---|
protected static class |
SOD.SODProxyScoreResult
Proxy class that converts a model result to an actual SOD score result.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<SOD.SODModel<?>> |
SOD.SODProxyScoreResult.models
Model result this is a proxy for.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayList<ArrayList<DBIDs>> |
AbstractAggarwalYuOutlier.buildRanges(Relation<V> database)
Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges. |
private PriorityQueue<FCPair<Double,DBID>> |
ABOD.calcDistsandNN(Relation<V> data,
KernelMatrix kernelMatrix,
int sampleSize,
DBID aKey,
HashMap<DBID,Double> dists) |
private PriorityQueue<FCPair<Double,DBID>> |
ABOD.calcDistsandRNDSample(Relation<V> data,
KernelMatrix kernelMatrix,
int sampleSize,
DBID aKey,
HashMap<DBID,Double> dists) |
protected List<DistanceResultPair<D>> |
ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point.
|
private void |
ABOD.generateExplanation(Relation<V> data,
DBID key,
LinkedList<DBID> expList) |
void |
ABOD.getExplanations(Relation<V> data)
Get explanations for points in the database.
|
OutlierResult |
ABOD.getFastRanking(Relation<V> relation,
int k,
int sampleSize)
Main part of the algorithm.
|
private KNNList<DoubleDistance> |
SOD.getKNN(Relation<V> database,
SimilarityQuery<V,IntegerDistance> snnInstance,
DBID queryObject)
Provides the k nearest neighbors in terms of the shared nearest neighbor
distance.
|
private Pair<Pair<KNNQuery<O,D>,KNNQuery<O,D>>,Pair<RKNNQuery<O,D>,RKNNQuery<O,D>>> |
OnlineLOF.getKNNAndRkNNQueries(Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
protected Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
private Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LOF.getKNNQueries(Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
OutlierResult |
ABOD.getRanking(Relation<V> relation,
int k)
Main part of the algorithm.
|
private double |
GaussianUniformMixture.loglikelihoodNormal(DBIDs objids,
Relation<V> database)
Computes the loglikelihood of all normal objects.
|
OutlierResult |
KNNOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
LoOP.run(Database database,
Relation<O> relation)
Performs the LoOP algorithm on the given database.
|
OutlierResult |
AbstractDBOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
OPTICSOF.run(Database database,
Relation<O> relation)
Perform OPTICS-based outlier detection.
|
OutlierResult |
LDOF.run(Database database,
Relation<O> relation) |
OutlierResult |
KNNWeightOutlier.run(Database database,
Relation<O> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
ABOD.run(Database database,
Relation<V> relation)
Run ABOD on the data set
|
OutlierResult |
EMOutlier.run(Database database,
Relation<V> relation)
Runs the algorithm in the timed evaluation part.
|
OutlierResult |
AggarwalYuEvolutionary.run(Database database,
Relation<V> relation)
Performs the evolutionary algorithm on the given database.
|
OutlierResult |
OnlineLOF.run(Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
calling
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
the preprocessors. |
OutlierResult |
LOF.run(Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
calling
#doRunInTime(Database) . |
OutlierResult |
GaussianUniformMixture.run(Relation<V> relation) |
OutlierResult |
ReferenceBasedOutlierDetection.run(Relation<V> relation)
Run the algorithm on the given relation.
|
OutlierResult |
GaussianModel.run(Relation<V> relation) |
OutlierResult |
AggarwalYuNaive.run(Relation<V> relation)
Run the algorithm on the given relation.
|
OutlierResult |
SOD.run(Relation<V> relation)
Performs the SOD algorithm on the given database.
|
Constructor and Description |
---|
AggarwalYuEvolutionary.EvolutionarySearch(Relation<V> database,
ArrayList<ArrayList<DBIDs>> ranges,
int m,
Long seed)
Constructor.
|
SOD.SODModel(Relation<O> database,
DBIDs neighborhood,
double alpha,
O queryObject)
Initialize SOD Model
|
SOD.SODProxyScoreResult(Relation<SOD.SODModel<?>> models,
DBIDs dbids)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
ExternalDoubleOutlierScore.run(Database database,
Relation<?> relation)
Run the algorithm.
|
OutlierResult |
FeatureBagging.run(Relation<NumberVector<?,?>> relation)
Run the algorithm on a data set.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm
|
OutlierResult |
TrimmedMeanApproach.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuZTestOutlier.run(Database database,
Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
SLOM.run(Database database,
Relation<N> spatial,
Relation<O> relation) |
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
SOF.run(Database database,
Relation<N> spatial,
Relation<O> relation)
The main run method
|
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm
|
OutlierResult |
CTLuRandomWalkEC.run(Relation<N> spatial,
Relation<? extends NumberVector<?,?>> relation)
Run the algorithm
|
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuMedianAlgorithm.run(Relation<N> nrel,
Relation<? extends NumberVector<?,?>> relation)
Main method
|
OutlierResult |
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes) |
OutlierResult |
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes) |
OutlierResult |
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
Relation<O> attributes)
Run the algorithm
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run the algorithm
|
OutlierResult |
CTLuGLSBackwardSearchAlgorithm.run(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run the algorithm
|
private Pair<DBID,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run a single iteration of the GLS-SOD modeling step
|
private Pair<DBID,Double> |
CTLuGLSBackwardSearchAlgorithm.singleIteration(Relation<V> relationx,
Relation<? extends NumberVector<?,?>> relationy)
Run a single iteration of the GLS-SOD modeling step
|
Modifier and Type | Method and Description |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Relation<? extends O> database)
Method to load the external neighbors.
|
NeighborSetPredicate |
ExternalNeighborhood.Factory.instantiate(Relation<?> database) |
NeighborSetPredicate |
NeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
Instantiation method.
|
NeighborSetPredicate |
PrecomputedKNearestNeighborNeighborhood.Factory.instantiate(Relation<? extends O> relation) |
NeighborSetPredicate |
ExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database) |
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Relation<?> database)
Method to load the external neighbors.
|
Modifier and Type | Method and Description |
---|---|
UnweightedNeighborhoodAdapter |
UnweightedNeighborhoodAdapter.Factory.instantiate(Relation<? extends O> relation) |
LinearWeightedExtendedNeighborhood |
LinearWeightedExtendedNeighborhood.Factory.instantiate(Relation<? extends O> database) |
WeightedNeighborSetPredicate |
WeightedNeighborSetPredicate.Factory.instantiate(Relation<? extends O> relation)
Instantiation method.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialNoOutlier.run(Relation<?> relation)
Run the actual algorithm.
|
OutlierResult |
ByLabelOutlier.run(Relation<?> relation)
Run the algorithm
|
OutlierResult |
TrivialAllOutlier.run(Relation<?> relation)
Run the actual algorithm.
|
Modifier and Type | Method and Description |
---|---|
private DoubleMinMax |
DistanceStatisticsWithClasses.exactMinMax(Relation<O> database,
DistanceQuery<O,D> distFunc) |
HistogramResult<DoubleVector> |
RankingQualityHistogram.run(Database database,
Relation<O> relation) |
private DoubleMinMax |
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> database,
DistanceQuery<O,D> distFunc) |
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends O> |
KNNExplorer.ExplorerWindow.data |
protected Relation<String> |
KNNExplorer.ExplorerWindow.labelRep
The label representation
|
Modifier and Type | Field and Description |
---|---|
private Relation<V> |
Bicluster.database
The database this bicluster is defined for.
|
Modifier and Type | Method and Description |
---|---|
Relation<V> |
Bicluster.getDatabase()
Getter to retrieve the database
|
Constructor and Description |
---|
Bicluster(ArrayDBIDs rowIDs,
int[] colIDs,
Relation<V> database)
Defines a new bicluster for given parameters.
|
Bicluster(int[] rowIDs,
int[] colIDs,
Relation<V> database)
Deprecated.
Use DBIDs, not integers!
|
BiclusterWithInverted(ArrayDBIDs rowIDs,
int[] colIDs,
Relation<V> database) |
BiclusterWithInverted(int[] rowIDs,
int[] colIDs,
Relation<V> database)
Deprecated.
Use DBIDs, not integer indexes!
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
number format.
|
Modifier and Type | Field and Description |
---|---|
protected List<Relation<?>> |
AbstractDatabase.relations
The relations we manage.
|
Modifier and Type | Method and Description |
---|---|
private Relation<?> |
StaticArrayDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta.
|
private Relation<?> |
HashmapDatabase.addNewRelation(SimpleTypeInformation<?> meta)
Add a new representation for the given meta.
|
protected Relation<?>[] |
StaticArrayDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding
new database columns when needed.
|
protected Relation<?>[] |
HashmapDatabase.alignColumns(ObjectBundle pack)
Find a mapping from package columns to database columns, eventually adding
new database columns when needed.
|
<O> Relation<O> |
AbstractDatabase.getRelation(TypeInformation restriction,
Object... hints) |
<O> Relation<O> |
Database.getRelation(TypeInformation restriction,
Object... hints)
Get an object representation.
|
Modifier and Type | Method and Description |
---|---|
Collection<Relation<?>> |
AbstractDatabase.getRelations() |
Collection<Relation<?>> |
Database.getRelations()
Get all relations of a database.
|
Modifier and Type | Method and Description |
---|---|
void |
ProxyDatabase.addRelation(Relation<?> relation)
Add a new representation.
|
<O,D extends Distance<D>> |
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O,D> distanceFunction,
Object... hints) |
<O,D extends Distance<D>> |
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get the distance query for a particular distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRangeQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a range query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getRKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance function.
|
<O,D extends Distance<D>> |
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints) |
<O,D extends Distance<D>> |
Database.getSimilarityQuery(Relation<O> relation,
SimilarityFunction<? super O,D> similarityFunction,
Object... hints)
Get the similarity query for a particular similarity function.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Relation<?>... relations)
Constructor.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids,
Iterable<Relation<?>> relations)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends O> |
AbstractDataBasedQuery.relation
The data to use for this query
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
AbstractDataBasedQuery.getRelation()
Give access to the underlying data query.
|
Constructor and Description |
---|
AbstractDataBasedQuery(Relation<? extends O> relation)
Database this query works on.
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
DistanceQuery.getRelation()
Access the underlying data query.
|
Constructor and Description |
---|
AbstractDatabaseDistanceQuery(Relation<? extends O> relation)
Constructor.
|
AbstractDistanceQuery(Relation<? extends O> relation)
Constructor.
|
DBIDDistanceQuery(Relation<DBID> relation,
DBIDDistanceFunction<D> distanceFunction)
Constructor.
|
PrimitiveDistanceQuery(Relation<? extends O> relation,
PrimitiveDistanceFunction<? super O,D> distanceFunction)
Constructor.
|
PrimitiveDistanceSimilarityQuery(Relation<? extends O> relation,
PrimitiveDistanceFunction<? super O,D> distanceFunction,
PrimitiveSimilarityFunction<? super O,D> similarityFunction)
Constructor.
|
SpatialPrimitiveDistanceQuery(Relation<? extends V> relation,
SpatialPrimitiveDistanceFunction<? super V,D> distanceFunction) |
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
KNNQuery.getRelation()
Access the underlying data query.
|
Constructor and Description |
---|
PreprocessorKNNQuery(Relation<O> database,
MaterializeKNNPreprocessor.Factory<O,D> preprocessor)
Constructor.
|
PreprocessorKNNQuery(Relation<O> database,
MaterializeKNNPreprocessor<O,D> preprocessor)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
RangeQuery.getRelation()
Access the underlying data query.
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
RKNNQuery.getRelation()
Access the underlying data query.
|
Constructor and Description |
---|
PreprocessorRKNNQuery(Relation<O> database,
MaterializeKNNAndRKNNPreprocessor.Factory<O,D> preprocessor)
Constructor.
|
PreprocessorRKNNQuery(Relation<O> database,
MaterializeKNNAndRKNNPreprocessor<O,D> preprocessor)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Relation<? extends O> |
SimilarityQuery.getRelation()
Access the underlying data query.
|
Constructor and Description |
---|
AbstractDBIDSimilarityQuery(Relation<? extends O> relation)
Constructor.
|
AbstractSimilarityQuery(Relation<? extends O> relation)
Constructor.
|
PrimitiveSimilarityQuery(Relation<? extends O> relation,
PrimitiveSimilarityFunction<? super O,D> similarityFunction)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
ConvertToStringView
Representation adapter that uses toString() to produce a string
representation.
|
class |
DBIDView
Pseudo-representation that is the object ID itself.
|
class |
MaterializedRelation<O>
Represents a single representation.
|
class |
ProxyView<O>
A virtual partitioning of the database.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<?> |
ConvertToStringView.existing
The database we use
|
private Relation<O> |
ProxyView.inner
The wrapped representation where we get the IDs from.
|
Modifier and Type | Method and Description |
---|---|
static <O> ProxyView<O> |
ProxyView.wrap(Database database,
DBIDs idview,
Relation<O> inner)
Constructor-like static method.
|
Constructor and Description |
---|
ConvertToStringView(Relation<?> existing)
Constructor.
|
ProxyView(Database database,
DBIDs idview,
Relation<O> inner)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<O extends DBID> |
AbstractDBIDDistanceFunction.instantiate(Relation<O> database) |
<T extends NumberVector<?,?>> |
AbstractCosineDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
SquaredEuclideanDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
ManhattanDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
EuclideanDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
MaximumDistanceFunction.instantiate(Relation<T> relation) |
<T extends NumberVector<?,?>> |
MinimumDistanceFunction.instantiate(Relation<T> relation) |
<T extends O> |
DistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.
|
<T extends O> |
FilteredLocalPCABasedDistanceFunction.instantiate(Relation<T> database)
Instantiate with a database to get the actual distance query.
|
<T extends O> |
MinKDistance.instantiate(Relation<T> relation) |
<T extends O> |
SharedNearestNeighborJaccardDistanceFunction.instantiate(Relation<T> database) |
<T extends O> |
AbstractPrimitiveDistanceFunction.instantiate(Relation<T> relation)
Instantiate with a database to get the actual distance query.
|
<T extends V> |
SpatialPrimitiveDistanceFunction.instantiate(Relation<T> relation) |
<T extends V> |
LocallyWeightedDistanceFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
AbstractDatabaseDistanceFunction.Instance(Relation<O> database,
DistanceFunction<? super O,D> parent)
Constructor.
|
AbstractIndexBasedDistanceFunction.Instance(Relation<O> database,
I index,
F parent)
Constructor.
|
LocallyWeightedDistanceFunction.Instance(Relation<V> database,
LocalProjectionIndex<V,?> index,
LocallyWeightedDistanceFunction<? super V> distanceFunction)
Constructor.
|
MinKDistance.Instance(Relation<T> relation,
int k,
DistanceFunction<? super O,D> parentDistance)
Constructor.
|
SharedNearestNeighborJaccardDistanceFunction.Instance(Relation<T> database,
SharedNearestNeighborIndex<T> preprocessor,
SharedNearestNeighborJaccardDistanceFunction<T> parent)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
abstract <T extends O> |
AbstractSimilarityAdapter.instantiate(Relation<T> database) |
<T extends O> |
SimilarityAdapterLn.instantiate(Relation<T> database) |
<T extends O> |
SimilarityAdapterLinear.instantiate(Relation<T> database) |
<T extends O> |
SimilarityAdapterArccos.instantiate(Relation<T> database) |
Constructor and Description |
---|
AbstractSimilarityAdapter.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
SimilarityAdapterArccos.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
SimilarityAdapterLinear.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<? super O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
SimilarityAdapterLn.Instance(Relation<O> database,
DistanceFunction<? super O,DoubleDistance> parent,
SimilarityQuery<O,? extends NumberDistance<?,?>> similarityQuery)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
HistogramIntersectionDistanceFunction.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
PCABasedCorrelationDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?,?>> |
ERiCDistanceFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
ERiCDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
ERiCDistanceFunction parent,
double delta,
double tau)
Constructor.
|
PCABasedCorrelationDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
double delta,
PCABasedCorrelationDistanceFunction distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
DimensionsSelectingEuclideanDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?,?>> |
DiSHDistanceFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?,?>> |
DimensionSelectingDistanceFunction.instantiate(Relation<T> database) |
<T extends V> |
HiSCDistanceFunction.instantiate(Relation<T> database) |
<V extends NumberVector<?,?>> |
SubspaceDistanceFunction.instantiate(Relation<V> database) |
Constructor and Description |
---|
AbstractPreferenceVectorBasedCorrelationDistanceFunction.Instance(Relation<V> database,
P preprocessor,
double epsilon,
AbstractPreferenceVectorBasedCorrelationDistanceFunction<? super V,?> distanceFunction)
Constructor.
|
DiSHDistanceFunction.Instance(Relation<V> database,
DiSHPreferenceVectorIndex<V> index,
double epsilon,
DiSHDistanceFunction distanceFunction)
Constructor.
|
HiSCDistanceFunction.Instance(Relation<V> database,
HiSCPreferenceVectorIndex<V> index,
double epsilon,
HiSCDistanceFunction<? super V> distanceFunction)
Constructor.
|
SubspaceDistanceFunction.Instance(Relation<V> database,
FilteredLocalPCAIndex<V> index,
SubspaceDistanceFunction distanceFunction) |
Modifier and Type | Field and Description |
---|---|
protected Relation<? extends DBID> |
AbstractDBIDSimilarityFunction.database
The database we work on
|
Modifier and Type | Method and Description |
---|---|
abstract <T extends O> |
AbstractIndexBasedSimilarityFunction.instantiate(Relation<T> database) |
<T extends O> |
SimilarityFunction.instantiate(Relation<T> relation)
Instantiate with a representation to get the actual similarity query.
|
<T extends O> |
IndexBasedSimilarityFunction.instantiate(Relation<T> database)
Preprocess the database to get the actual distance function.
|
<T extends O> |
AbstractPrimitiveSimilarityFunction.instantiate(Relation<T> relation) |
<T extends O> |
FractionalSharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database) |
<T extends O> |
SharedNearestNeighborSimilarityFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
AbstractDBIDSimilarityFunction(Relation<? extends DBID> database)
Constructor.
|
AbstractIndexBasedSimilarityFunction.Instance(Relation<O> database,
I index)
Constructor.
|
FractionalSharedNearestNeighborSimilarityFunction.Instance(Relation<T> database,
SharedNearestNeighborIndex<T> preprocessor)
Constructor.
|
SharedNearestNeighborSimilarityFunction.Instance(Relation<O> database,
SharedNearestNeighborIndex<O> preprocessor)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends NumberVector<?,?>> |
FooKernelFunction.instantiate(Relation<T> database) |
<T extends NumberVector<?,?>> |
PolynomialKernelFunction.instantiate(Relation<T> database) |
<T extends O> |
LinearKernelFunction.instantiate(Relation<T> database) |
Constructor and Description |
---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database)
Deprecated.
ID mapping is not reliable!
|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
Relation<? extends O> database,
ArrayDBIDs ids)
Provides a new kernel matrix.
|
Modifier and Type | Field and Description |
---|---|
private Relation<Double> |
ROC.OutlierScoreAdapter.scores
Outlier score
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<?> |
ComputeSimilarityMatrixImage.SimilarityMatrix.relation
The database
|
Modifier and Type | Method and Description |
---|---|
Relation<?> |
ComputeSimilarityMatrixImage.SimilarityMatrix.getRelation()
Get the relation
|
Modifier and Type | Method and Description |
---|---|
private ComputeSimilarityMatrixImage.SimilarityMatrix |
ComputeSimilarityMatrixImage.computeSimilarityMatrixImage(Relation<O> relation,
Iterator<DBID> iter)
Compute the actual similarity image.
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img,
Relation<?> relation,
ArrayDBIDs ids)
Constructor
|
Modifier and Type | Field and Description |
---|---|
protected Relation<O> |
AbstractIndex.relation
The representation we are bound to.
|
Modifier and Type | Method and Description |
---|---|
I |
IndexFactory.instantiate(Relation<V> relation)
Sets the database in the distance function of this index (if existing).
|
Constructor and Description |
---|
AbstractIndex(Relation<O> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
I |
LocalProjectionIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database.
|
Constructor and Description |
---|
AbstractPreprocessorIndex(Relation<O> relation)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private MetricalIndexTree<O,D,N,E> |
MetricalIndexApproximationMaterializeKNNPreprocessor.getMetricalIndex(Relation<O> relation)
Do some (limited) type checking, then cast the database into a spatial
database.
|
SpatialApproximationMaterializeKNNPreprocessor<NumberVector<?,?>,D,N,E> |
SpatialApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<NumberVector<?,?>> relation) |
PartitionApproximationMaterializeKNNPreprocessor<O,D> |
PartitionApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
MetricalIndexApproximationMaterializeKNNPreprocessor<O,D,N,E> |
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
MaterializeKNNPreprocessor<O,D> |
MaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
MaterializeKNNAndRKNNPreprocessor<O,D> |
MaterializeKNNAndRKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
abstract AbstractMaterializeKNNPreprocessor<O,D> |
AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
AbstractMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor.
|
MaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor with preprocessing step.
|
MaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k,
boolean preprocess)
Constructor.
|
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor
|
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k,
int partitions)
Constructor
|
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
int k)
Constructor
|
Modifier and Type | Method and Description |
---|---|
abstract I |
AbstractFilteredPCAIndex.Factory.instantiate(Relation<NV> relation) |
I |
FilteredLocalPCAIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database.
|
KNNQueryFilteredPCAIndex<V> |
KNNQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation) |
RangeQueryFilteredPCAIndex<V> |
RangeQueryFilteredPCAIndex.Factory.instantiate(Relation<V> relation) |
Constructor and Description |
---|
AbstractFilteredPCAIndex(Relation<NV> relation,
PCAFilteredRunner<NV> pca)
Constructor.
|
KNNQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor.
|
RangeQueryFilteredPCAIndex(Relation<NV> database,
PCAFilteredRunner<NV> pca,
RangeQuery<NV,DoubleDistance> rangeQuery,
DoubleDistance epsilon)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private BitSet |
HiSCPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
DBID id,
DBIDs neighborIDs,
StringBuffer msg)
Determines the preference vector according to the specified neighbor ids.
|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuffer msg)
Determines the preference vector according to the specified neighbor ids.
|
private BitSet |
DiSHPreferenceVectorIndex.determinePreferenceVectorByApriori(Relation<V> relation,
ModifiableDBIDs[] neighborIDs,
StringBuffer msg)
Determines the preference vector with the apriori strategy.
|
private RangeQuery<V,DoubleDistance>[] |
DiSHPreferenceVectorIndex.initRangeQueries(Relation<V> relation,
int dimensionality)
Initializes the dimension selecting distancefunctions to determine the
preference vectors.
|
DiSHPreferenceVectorIndex<V> |
DiSHPreferenceVectorIndex.Factory.instantiate(Relation<V> relation) |
abstract I |
AbstractPreferenceVectorIndex.Factory.instantiate(Relation<V> relation) |
I |
PreferenceVectorIndex.Factory.instantiate(Relation<V> relation)
Instantiate the index for a given database.
|
HiSCPreferenceVectorIndex<V> |
HiSCPreferenceVectorIndex.Factory.instantiate(Relation<V> relation) |
Constructor and Description |
---|
AbstractPreferenceVectorIndex(Relation<NV> relation)
Constructor.
|
DiSHPreferenceVectorIndex(Relation<V> relation,
DoubleDistance[] epsilon,
int minpts,
DiSHPreferenceVectorIndex.Strategy strategy)
Constructor.
|
HiSCPreferenceVectorIndex(Relation<V> relation,
double alpha,
int k)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
I |
SharedNearestNeighborIndex.Factory.instantiate(Relation<O> database)
Instantiate the index for a given database.
|
SharedNearestNeighborPreprocessor<O,D> |
SharedNearestNeighborPreprocessor.Factory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
SharedNearestNeighborPreprocessor(Relation<O> relation,
int numberOfNeighbors,
DistanceFunction<O,D> distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected abstract P |
AbstractSubspaceProjectionIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<NV> relation)
This method implements the type of variance analysis to be computed for a
given point.
|
protected SubspaceProjectionResult |
PreDeConSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database) |
protected PCAFilteredResult |
FourCSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database) |
I |
SubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation)
Instantiate the index for a given database.
|
abstract I |
AbstractSubspaceProjectionIndex.Factory.instantiate(Relation<NV> relation) |
PreDeConSubspaceIndex<V,D> |
PreDeConSubspaceIndex.Factory.instantiate(Relation<V> relation) |
FourCSubspaceIndex<V,D> |
FourCSubspaceIndex.Factory.instantiate(Relation<V> relation) |
Constructor and Description |
---|
AbstractSubspaceProjectionIndex(Relation<NV> relation,
D epsilon,
DistanceFunction<NV,D> rangeQueryDistanceFunction,
int minpts)
Constructor.
|
FourCSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
PCAFilteredRunner<V> pca)
Full constructor.
|
PreDeConSubspaceIndex(Relation<V> relation,
D epsilon,
DistanceFunction<V,D> rangeQueryDistanceFunction,
int minpts,
double delta)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
abstract I |
TreeIndexFactory.instantiate(Relation<O> relation) |
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkAppTreeIndex.relation
The relation indexed
|
Modifier and Type | Method and Description |
---|---|
MkAppTreeIndex<O,D> |
MkAppTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkAppTreeIndex(Relation<O> relation,
PageFile<MkAppTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max,
int p,
boolean log)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkCoPTreeIndex.relation
Relation indexed
|
Modifier and Type | Method and Description |
---|---|
MkCoPTreeIndex<O,D> |
MkCopTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkCoPTreeIndex(Relation<O> relation,
PageFile<MkCoPTreeNode<O,D>> pageFile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkMaxTreeIndex.relation |
Modifier and Type | Method and Description |
---|---|
MkMaxTreeIndex<O,D> |
MkMaxTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkMaxTreeIndex(Relation<O> relation,
PageFile<MkMaxTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MkTabTreeIndex.relation
The relation indexed.
|
Modifier and Type | Method and Description |
---|---|
MkTabTreeIndex<O,D> |
MkTabTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MkTabTreeIndex(Relation<O> relation,
PageFile<MkTabTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction,
int k_max)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
MTreeIndex.relation
The relation indexed.
|
Modifier and Type | Method and Description |
---|---|
MTreeIndex<O,D> |
MTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
MTreeIndex(Relation<O> relation,
PageFile<MTreeNode<O,D>> pagefile,
DistanceQuery<O,D> distanceQuery,
DistanceFunction<O,D> distanceFunction)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
DeLiCluTreeIndex.relation
The relation we index
|
Modifier and Type | Method and Description |
---|---|
DeLiCluTreeIndex<O> |
DeLiCluTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
DeLiCluTreeIndex(Relation<O> relation,
PageFile<DeLiCluNode> pagefile,
BulkSplit bulkSplitter,
InsertionStrategy insertionStrategy)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Relation<O> |
RStarTreeIndex.relation
Relation
|
Modifier and Type | Method and Description |
---|---|
RStarTreeIndex<O> |
RStarTreeFactory.instantiate(Relation<O> relation) |
Constructor and Description |
---|
RStarTreeIndex(Relation<O> relation,
PageFile<RStarTreeNode> pagefile,
BulkSplit bulkSplitter,
InsertionStrategy insertionStrategy)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
<F extends NumberVector<? extends F,?>> |
CovarianceMatrix.getMeanVector(Relation<? extends F> relation)
Get the mean as vector.
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?,?>> relation)
Static Constructor from a relation.
|
static ProjectedCentroid |
ProjectedCentroid.make(BitSet dims,
Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static Constructor from a relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?,?>> relation)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation)
Static Constructor from a full relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector<?,?>> relation,
Iterable<DBID> ids)
Static Constructor from a full relation.
|
<F extends NumberVector<? extends F,?>> |
Centroid.toVector(Relation<? extends F> relation)
Get the data as vector
|
Modifier and Type | Method and Description |
---|---|
PCAResult |
PCARunner.processDatabase(Relation<? extends V> database)
Run PCA on the complete database
|
Matrix |
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database) |
Matrix |
CovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database
|
Matrix |
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database
|
Matrix |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Weighted Covariance Matrix for a set of IDs.
|
PCAResult |
PCARunner.processIds(DBIDs ids,
Relation<? extends V> database)
Run PCA on a collection of database IDs
|
abstract Matrix |
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database) |
Matrix |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs
|
Matrix |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs
|
PCAFilteredResult |
PCAFilteredRunner.processIds(DBIDs ids,
Relation<? extends V> database)
Run PCA on a collection of database IDs
|
<D extends NumberDistance<?,?>> |
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection
|
<D extends NumberDistance<?,?>> |
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection
|
<D extends NumberDistance<?,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database) |
<D extends NumberDistance<?,?>> |
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
<D extends NumberDistance<?,?>> |
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
<D extends NumberDistance<?,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k) |
<D extends NumberDistance<?,?>> |
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
Constructor and Description |
---|
ZCurve.Transformer(Relation<? extends NumberVector<?,?>> relation,
DBIDs ids)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static List<Relation<?>> |
ResultUtil.getRelations(Result r)
Collect all Annotation results from a Result
|
Modifier and Type | Method and Description |
---|---|
private StringBuffer |
KMLOutputHandler.makeDescription(Collection<Relation<?>> relations,
DBID id)
Make an HTML description.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
ClusterOrderResult.PredecessorAdapter
Result containing the predecessor ID.
|
(package private) class |
ClusterOrderResult.ReachabilityDistanceAdapter
Result containing the reachability distances.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<Double> |
OrderingFromRelation.scores
Outlier scores.
|
private Relation<Double> |
OutlierResult.scores
Outlier scores.
|
Modifier and Type | Method and Description |
---|---|
Relation<Double> |
OutlierResult.getScores()
Get the outlier scores association.
|
Constructor and Description |
---|
OrderingFromRelation(Relation<Double> scores)
Ascending constructor.
|
OrderingFromRelation(Relation<Double> scores,
boolean ascending)
Constructor for outlier orderings
|
OutlierResult(OutlierScoreMeta meta,
Relation<Double> scores)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.printObject(TextWriterStream out,
Database db,
DBID objID,
List<Relation<?>> ra) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Cluster<?> clus,
List<Relation<?>> ra,
NamingScheme naming,
List<SettingsResult> sr) |
private void |
TextWriter.writeOrderingResult(Database db,
StreamFactory streamOpener,
OrderingResult or,
List<Relation<?>> ra,
List<SettingsResult> sr) |
Modifier and Type | Field and Description |
---|---|
(package private) Relation<? extends O> |
DatabaseUtil.RelationObjectIterator.database
The database we use
|
(package private) Relation<? extends O> |
DatabaseUtil.CollectionFromRelation.db
The database we query
|
Modifier and Type | Method and Description |
---|---|
static Relation<String> |
DatabaseUtil.guessLabelRepresentation(Database database)
Guess a potentially label-like representation.
|
static Relation<String> |
DatabaseUtil.guessObjectLabelRepresentation(Database database)
Guess a potentially object label-like representation.
|
static <V extends NumberVector<?,?>,T extends NumberVector<?,?>> |
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
Modifier and Type | Method and Description |
---|---|
static <V extends FeatureVector<?,?>> |
DatabaseUtil.assumeVectorField(Relation<V> relation)
Get the dimensionality of a database
|
static <V extends NumberVector<? extends V,?>> |
DatabaseUtil.centroid(Relation<? extends V> relation)
Returns the centroid as a NumberVector object of the specified database.
|
static <V extends NumberVector<? extends V,?>> |
DatabaseUtil.centroid(Relation<? extends V> relation,
DBIDs ids)
Returns the centroid as a NumberVector object of the specified objects
stored in the given database.
|
static <V extends NumberVector<? extends V,?>> |
DatabaseUtil.centroid(Relation<? extends V> relation,
DBIDs ids,
BitSet dimensions)
Returns the centroid w.r.t. the dimensions specified by the given BitSet as
a NumberVector object of the specified objects stored in the given
database.
|
static <NV extends NumberVector<NV,?>> |
DatabaseUtil.computeMinMax(Relation<NV> database)
Determines the minimum and maximum values in each dimension of all objects
stored in the given database.
|
static <V extends NumberVector<? extends V,?>> |
DatabaseUtil.covarianceMatrix(Relation<? extends V> database,
DBIDs ids)
Determines the covariance matrix of the objects stored in the given
database.
|
static int |
DatabaseUtil.dimensionality(Relation<? extends FeatureVector<?,?>> relation)
Get the dimensionality of a database
|
static <V extends NumberVector<?,?>> |
DatabaseUtil.exactMedian(Relation<V> relation,
DBIDs ids,
int dimension)
Returns the median of a data set in the given dimension.
|
static <O> Class<?> |
DatabaseUtil.getBaseObjectClassExpensive(Relation<O> database)
Do a full inspection of the database to find the base object class.
|
static SortedSet<ClassLabel> |
DatabaseUtil.getClassLabels(Relation<? extends ClassLabel> database)
Retrieves all class labels within the database.
|
static <V extends FeatureVector<?,?>> |
DatabaseUtil.getColumnLabel(Relation<? extends V> rel,
int col)
Get the column name or produce a generic label "Column XY".
|
static <O> Class<? extends O> |
DatabaseUtil.guessObjectClass(Relation<O> database)
Do a cheap guess at the databases object class.
|
static <V extends NumberVector<?,?>> |
DatabaseUtil.quickMedian(Relation<V> relation,
ArrayDBIDs ids,
int dimension,
int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling
method.
|
static <V extends NumberVector<?,?>,T extends NumberVector<?,?>> |
DatabaseUtil.relationUglyVectorCast(Relation<T> database)
An ugly vector type cast unavoidable in some situations due to Generics.
|
static double[] |
DatabaseUtil.variances(Relation<? extends NumberVector<?,?>> database,
NumberVector<?,?> centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored
in the given database.
|
static <V extends NumberVector<? extends V,?>> |
DatabaseUtil.variances(Relation<V> database)
Determines the variances in each dimension of all objects stored in the
given database.
|
static <V extends NumberVector<? extends V,?>> |
DatabaseUtil.variances(Relation<V> database,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored
in the given database.
|
Constructor and Description |
---|
DatabaseUtil.CollectionFromRelation(Relation<? extends O> db)
Constructor.
|
DatabaseUtil.RelationObjectIterator(Iterator<DBID> iter,
Relation<? extends O> database)
Full Constructor.
|
DatabaseUtil.RelationObjectIterator(Relation<? extends O> database)
Simplified constructor.
|
Modifier and Type | Method and Description |
---|---|
<T extends O> |
FullDatabaseReferencePoints.getReferencePoints(Relation<T> db) |
<T extends O> |
ReferencePointsHeuristic.getReferencePoints(Relation<T> db)
Get the reference points for the given database.
|
<T extends V> |
RandomSampleReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
AxisBasedReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
RandomGeneratedReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
GridBasedReferencePoints.getReferencePoints(Relation<T> db) |
<T extends V> |
StarBasedReferencePoints.getReferencePoints(Relation<T> db) |
Modifier and Type | Method and Description |
---|---|
private double[] |
SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
BitSet t,
Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method.
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<?> |
VisualizationTask.relation
The main representation
|
Modifier and Type | Method and Description |
---|---|
<R extends Relation<?>> |
VisualizationTask.getRelation() |
Constructor and Description |
---|
VisualizationTask(String name,
Result result,
Relation<?> relation,
VisFactory factory)
Visualization task.
|
VisualizationTask(String name,
VisualizerContext context,
Result result,
Relation<?> relation,
VisFactory factory,
Projection proj,
SVGPlot svgp,
double width,
double height)
Constructor
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<ClassLabel> |
SelectionTableWindow.crep
Class label representation
|
(package private) Relation<String> |
SelectionTableWindow.orep
Object label representation
|
Modifier and Type | Field and Description |
---|---|
(package private) Relation<V> |
ScatterPlotProjector.rel
Relation we project
|
(package private) Relation<V> |
HistogramProjector.rel
Relation we project
|
Modifier and Type | Method and Description |
---|---|
Relation<V> |
ScatterPlotProjector.getRelation()
The relation we project.
|
Relation<V> |
HistogramProjector.getRelation()
Get the relation we project.
|
Constructor and Description |
---|
HistogramProjector(Relation<V> rel,
int maxdim)
Constructor.
|
ScatterPlotProjector(Relation<V> rel,
int maxdim)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <O extends NumberVector<?,? extends Number>> |
Scales.calcScales(Relation<O> db)
Compute a linear scale for each dimension.
|
Modifier and Type | Method and Description |
---|---|
static Iterator<Relation<? extends NumberVector<?,?>>> |
VisualizerUtil.iterateVectorFieldRepresentations(Result result)
Filter for number vector field representations
|
Modifier and Type | Field and Description |
---|---|
private Relation<NV> |
P1DHistogramVisualizer.relation
The database we visualize
|
Modifier and Type | Field and Description |
---|---|
protected Relation<NV> |
P2DVisualization.rel
The representation we visualize
|
protected Relation<PolygonsObject> |
PolygonVisualization.rep
The representation we visualize
|
private Relation<? extends Number> |
TooltipScoreVisualization.result
Number value to visualize
|
private Relation<?> |
TooltipStringVisualization.result
Number value to visualize
|