@Title(value="BruteForce: Outlier detection for high dimensional data") @Description(value="Examines all possible sets of k dimensional projections") @Reference(authors="C.C. Aggarwal, P. S. Yu", title="Outlier detection for high dimensional data", booktitle="Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2001), Santa Barbara, CA, 2001", url="http://dx.doi.org/10.1145/375663.375668") public class AggarwalYuNaive<V extends NumberVector<?,?>> extends AbstractAggarwalYuOutlier<V>
AggarwalYuEvolutionary
.
Reference:
Outlier detection for high dimensional data Outlier detection for high
dimensional data
C.C. Aggarwal, P. S. Yu
International Conference on Management of Data Proceedings of the 2001 ACM
SIGMOD international conference on Management of data 2001, Santa Barbara,
California, United States
Modifier and Type | Class and Description |
---|---|
static class |
AggarwalYuNaive.Parameterizer<V extends NumberVector<?,?>>
Parameterization class.
|
Modifier and Type | Field and Description |
---|---|
private static Logging |
logger
The logger for this class.
|
Constructor and Description |
---|
AggarwalYuNaive(int k,
int phi)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get the (STATIC) logger for this class.
|
OutlierResult |
run(Relation<V> relation)
Run the algorithm on the given relation.
|
buildRanges, computeSubspace, computeSubspaceForGene, getInputTypeRestriction, sparsity
makeParameterDistanceFunction, run
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
run
private static final Logging logger
public AggarwalYuNaive(int k, int phi)
k
- Kphi
- Phipublic OutlierResult run(Relation<V> relation)
relation
- Relationprotected Logging getLogger()
AbstractAlgorithm
getLogger
in class AbstractAlgorithm<OutlierResult>