Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.evaluation.paircounting |
Evaluation of clustering results via pair counting.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
Visualizers that do work on OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
Visualizers based on 1D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
Visualizers based on 2D projections.
|
Class and Description |
---|
CorrelationAnalysisSolution
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
Class and Description |
---|
DendrogramModel
Model for dendrograms, provides the distance to the child cluster.
|
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
MeanModel
Cluster model that stores a mean for the cluster.
|
Model
Base interface for Model classes.
|
OPTICSModel
Model for an OPTICS cluster
|
Class and Description |
---|
CorrelationModel
Cluster model using a filtered PCA result and an centroid.
|
Model
Base interface for Model classes.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
SubspaceModel
Model for Subspace Clusters.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
BaseModel
Abstract base class for Cluster Models.
|
Bicluster
Wrapper class to provide the basic properties of a bicluster.
|
ClusterModel
Generic cluster model.
|
MeanModel
Cluster model that stores a mean for the cluster.
|
Model
Base interface for Model classes.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
OPTICSModel
Model for an OPTICS cluster
|
Class and Description |
---|
Model
Base interface for Model classes.
|
Class and Description |
---|
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
MeanModel
Cluster model that stores a mean for the cluster.
|
Model
Base interface for Model classes.
|