Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
Visualizers based on 2D projections.
|
Modifier and Type | Method and Description |
---|---|
Clustering<MeanModel<V>> |
KMeans.run(Database database,
Relation<V> relation)
Run k-means
|
Modifier and Type | Class and Description |
---|---|
class |
EMModel<V extends FeatureVector<V,?>>
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
SubspaceModel<V extends FeatureVector<V,?>>
Model for Subspace Clusters.
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<MeanModel<NV>> |
ClusterMeanVisualization.clustering
Clustering to visualize.
|
Modifier and Type | Method and Description |
---|---|
private static <NV extends NumberVector<NV,?>> |
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|
private static <NV extends NumberVector<NV,?>> |
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model.
|