Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.evaluation.paircounting |
Evaluation of clustering results via pair counting.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis1d |
Visualizers based on 1D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
Visualizers based on 2D projections.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
|
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
|
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
SLINK.extractClusters_erich(DBIDs ids,
DataStore<DBID> pi,
DataStore<D> lambda,
int minclusters)
Extract all clusters from the pi-lambda-representation.
|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<Model> |
DBSCAN.run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Clustering<Model> |
AbstractProjectedDBSCAN.run(Database database,
Relation<V> relation) |
Modifier and Type | Field and Description |
---|---|
protected Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.Parameterizer.algC |
private Class<? extends ClusteringAlgorithm<Clustering<Model>>> |
COPAC.partitionAlgorithm
Get the algorithm to run on each partition.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
ClusteringAlgorithm<Clustering<Model>> |
COPAC.getPartitionAlgorithm(DistanceQuery<V,D> query)
Returns the partition algorithm.
|
Clustering<Model> |
CASH.run(Database database,
Relation<ParameterizationFunction> relation)
Run CASH on the relation.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Clustering<Model> |
COPAC.run(Relation<V> relation)
Performs the COPAC algorithm on the given database.
|
private Clustering<Model> |
COPAC.runPartitionAlgorithm(Relation<V> relation,
Map<Integer,DBIDs> partitionMap,
DistanceQuery<V,D> query)
Runs the partition algorithm and creates the result.
|
Modifier and Type | Method and Description |
---|---|
private SortedMap<Integer,List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Constructor and Description |
---|
COPAC(FilteredLocalPCABasedDistanceFunction<V,?,D> partitionDistanceFunction,
Class<? extends ClusteringAlgorithm<Clustering<Model>>> partitionAlgorithm,
Collection<Pair<OptionID,Object>> partitionAlgorithmParameters)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
PROCLUS.run(Database database,
Relation<V> relation)
Performs the PROCLUS algorithm on the given database.
|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace<V> subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
Modifier and Type | Method and Description |
---|---|
private Subspace<V> |
SUBCLU.bestSubspace(List<Subspace<V>> subspaces,
Subspace<V> candidate,
TreeMap<Subspace<V>,List<Cluster<Model>>> clusterMap)
Determines the
d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
Modifier and Type | Class and Description |
---|---|
class |
Cluster<M extends Model>
Generic cluster class, that may or not have hierarchical information.
|
class |
Clustering<M extends Model>
Result class for clusterings.
|
Modifier and Type | Field and Description |
---|---|
private M |
Cluster.model
Cluster model.
|
Modifier and Type | Class and Description |
---|---|
class |
BaseModel
Abstract base class for Cluster Models.
|
class |
Bicluster<V extends FeatureVector<?,?>>
Wrapper class to provide the basic properties of a bicluster.
|
class |
BiclusterWithInverted<V extends FeatureVector<V,?>>
This code was factored out of the Bicluster class, since not all biclusters
have inverted rows.
|
class |
ClusterModel
Generic cluster model.
|
class |
CorrelationAnalysisSolution<V extends NumberVector<V,?>>
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
class |
CorrelationModel<V extends FeatureVector<V,?>>
Cluster model using a filtered PCA result and an centroid.
|
class |
DendrogramModel<D extends Distance<D>>
Model for dendrograms, provides the distance to the child cluster.
|
class |
DimensionModel
Cluster model just providing a cluster dimensionality.
|
class |
EMModel<V extends FeatureVector<V,?>>
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
LinearEquationModel
Cluster model containing a linear equation system for the cluster.
|
class |
MeanModel<V extends FeatureVector<V,?>>
Cluster model that stores a mean for the cluster.
|
class |
OPTICSModel
Model for an OPTICS cluster
|
class |
SubspaceModel<V extends FeatureVector<V,?>>
Model for Subspace Clusters.
|
Modifier and Type | Method and Description |
---|---|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.compareClusterings(R result1,
S result2,
double beta,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Compare two clustering results.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.countPairs(R result1,
S result2)
Compare two sets of generated pairs.
|
static <R extends Clustering<M>,M extends Model,S extends Clustering<N>,N extends Model> |
PairCountingFMeasure.countPairs(R result1,
S result2)
Compare two sets of generated pairs.
|
static <R extends Clustering<M>,M extends Model> |
PairCountingFMeasure.getPairGenerator(R clusters,
boolean noiseSpecial,
boolean hierarchicalSpecial)
Get a pair generator for the given Clustering
|
Modifier and Type | Method and Description |
---|---|
static List<Clustering<? extends Model>> |
ResultUtil.getClusteringResults(Result r)
Collect all clustering results from a Result
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering.
|
Clustering<Model> |
VisualizerContext.getOrCreateDefaultClustering()
Convenience method to get the clustering to use, and fall back to a default
"clustering".
|
Modifier and Type | Method and Description |
---|---|
static <D extends Distance<D>> |
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co,
OPTICSDistanceAdapter<D> adapter,
double epsilon)
Compute an OPTICS cut clustering
|
Modifier and Type | Field and Description |
---|---|
private Clustering<Model> |
P1DHistogramVisualizer.clustering
The clustering we visualize
|
Modifier and Type | Field and Description |
---|---|
private Clustering<Model> |
ClusteringVisualization.clustering
The result we visualize
|
(package private) Clustering<Model> |
ClusterConvexHullVisualization.clustering
The result we work on
|
Modifier and Type | Method and Description |
---|---|
private void |
BubbleVisualization.setupCSS(SVGPlot svgp,
Clustering<? extends Model> clustering)
Registers the Bubble-CSS-Class at a SVGPlot.
|