Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
Provides an abstract algorithm already setting the distance function.
|
class |
AbstractPrimitiveDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
Provides an abstract algorithm already setting the distance function.
|
class |
APRIORI
Provides the APRIORI algorithm for Mining Association Rules.
|
class |
DependencyDerivator<V extends NumberVector<V,?>,D extends Distance<D>>
Dependency derivator computes quantitatively linear dependencies among
attributes of a given dataset based on a linear correlation PCA.
|
class |
DummyAlgorithm<O extends NumberVector<?,?>>
Dummy Algorithm, which just iterates over all points once, doing a 10NN query
each.
|
class |
KNNDistanceOrder<O,D extends Distance<D>>
Provides an order of the kNN-distances for all objects within the database.
|
class |
KNNJoin<V extends NumberVector<V,?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors.
|
class |
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set.
|
class |
NullAlgorithm
Null Algorithm, which does nothing.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractProjectedClustering<R extends Clustering<Model>,V extends NumberVector<V,?>>
|
class |
AbstractProjectedDBSCAN<R extends Clustering<Model>,V extends NumberVector<V,?>>
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.
|
class |
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
sets in a database.
|
class |
DeLiClu<NV extends NumberVector<NV,?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
density-connected sets in a database.
|
class |
EM<V extends NumberVector<V,?>>
Provides the EM algorithm (clustering by expectation maximization).
|
class |
KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the k-means algorithm.
|
class |
OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm.
|
class |
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction.
|
class |
SLINK<O,D extends Distance<D>>
Efficient implementation of the Single-Link Algorithm SLINK of R.
|
class |
SNNClustering<O>
Shared nearest neighbor clustering.
|
Modifier and Type | Class and Description |
---|---|
class |
CASH
Provides the CASH algorithm, an subspace clustering algorithm based on the
hough transform.
|
class |
COPAC<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according
to the correlation dimension of its objects and to then perform an arbitrary
clustering algorithm over the partitions.
|
class |
ERiC<V extends NumberVector<V,?>>
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
|
class |
FourC<V extends NumberVector<V,?>>
4C identifies local subgroups of data objects sharing a uniform correlation.
|
class |
HiCO<V extends NumberVector<V,?>>
Implementation of the HiCO algorithm, an algorithm for detecting hierarchies
of correlation clusters.
|
class |
ORCLUS<V extends NumberVector<V,?>>
ORCLUS provides the ORCLUS algorithm, an algorithm to find clusters in high
dimensional spaces.
|
Modifier and Type | Class and Description |
---|---|
class |
CLIQUE<V extends NumberVector<V,?>>
Implementation of the CLIQUE algorithm, a grid-based algorithm to identify
dense clusters in subspaces of maximum dimensionality.
|
class |
DiSH<V extends NumberVector<V,?>>
Algorithm for detecting subspace hierarchies.
|
class |
HiSC<V extends NumberVector<V,?>>
Implementation of the HiSC algorithm, an algorithm for detecting hierarchies
of subspace clusters.
|
class |
PreDeCon<V extends NumberVector<V,?>>
PreDeCon computes clusters of subspace preference weighted connected points.
|
class |
PROCLUS<V extends NumberVector<V,?>>
Provides the PROCLUS algorithm, an algorithm to find subspace clusters in
high dimensional spaces.
|
class |
SUBCLU<V extends NumberVector<V,?>>
Implementation of the SUBCLU algorithm, an algorithm to detect arbitrarily
shaped and positioned clusters in subspaces.
|
Modifier and Type | Class and Description |
---|---|
class |
ByLabelClustering
Pseudo clustering using labels.
|
class |
ByLabelHierarchicalClustering
Pseudo clustering using labels.
|
class |
TrivialAllInOne
Trivial pseudo-clustering that just considers all points to be one big
cluster.
|
class |
TrivialAllNoise
Trivial pseudo-clustering that just considers all points to be noise.
|
Modifier and Type | Class and Description |
---|---|
class |
ABOD<V extends NumberVector<V,?>>
Angle-Based Outlier Detection
Outlier detection using variance analysis on angles, especially for high
dimensional data sets.
|
class |
AbstractAggarwalYuOutlier<V extends NumberVector<?,?>>
Abstract base class for the sparse-grid-cell based outlier detection of
Aggarwal and Yu.
|
class |
AbstractDBOutlier<O,D extends Distance<D>>
Simple distance based outlier detection algorithms.
|
class |
AggarwalYuEvolutionary<V extends NumberVector<?,?>>
EAFOD provides the evolutionary outlier detection algorithm, an algorithm to
detect outliers for high dimensional data.
|
class |
AggarwalYuNaive<V extends NumberVector<?,?>>
BruteForce provides a naive brute force algorithm in which all k-subsets of
dimensions are examined and calculates the sparsity coefficient to find
outliers.
|
class |
DBOutlierDetection<O,D extends Distance<D>>
Simple distanced based outlier detection algorithm.
|
class |
DBOutlierScore<O,D extends Distance<D>>
Compute percentage of neighbors in the given neighborhood with size d.
|
class |
EMOutlier<V extends NumberVector<V,?>>
outlier detection algorithm using EM Clustering.
|
class |
GaussianModel<V extends NumberVector<V,?>>
Outlier have smallest GMOD_PROB: the outlier scores is the
probability density of the assumed distribution.
|
class |
GaussianUniformMixture<V extends NumberVector<V,?>>
Outlier detection algorithm using a mixture model approach.
|
class |
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
Outliers using Symmetric Relationship
Reference:
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc. |
class |
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest
neighbor.
|
class |
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
nearest neighbors.
|
class |
LDOF<O,D extends NumberDistance<D,?>>
Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
Database.
|
class |
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral".
|
class |
LOF<O,D extends NumberDistance<D,?>>
Algorithm to compute density-based local outlier factors in a database based
on a specified parameter
LOF.K_ID (-lof.k ). |
class |
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities
Distance/density based algorithm similar to LOF to detect outliers, but with
statistical methods to achieve better result stability.
|
class |
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the
LOF Algorithm, supports insertions and
removals. |
class |
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
Outliers in a database.
|
class |
ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that
computes kNN distances approximately, using reference points.
|
class |
SOD<V extends NumberVector<V,?>> |
Modifier and Type | Class and Description |
---|---|
class |
ExternalDoubleOutlierScore
External outlier detection scores, loading outlier scores from an external
file.
|
class |
FeatureBagging
A simple ensemble method called "Feature bagging" for outlier detection.
|
class |
RescaleMetaOutlierAlgorithm
Scale another outlier score using the given scaling function.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods.
|
class |
AbstractNeighborhoodOutlier<O>
Abstract base class for spatial outlier detection methods using a spatial
neighborhood.
|
class |
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers.
|
class |
CTLuMeanMultipleAttributes<N,O extends NumberVector<?,?>>
Mean Approach is used to discover spatial outliers with multiple attributes.
|
class |
CTLuMedianAlgorithm<N>
Median Algorithm of C.
|
class |
CTLuMedianMultipleAttributes<N,O extends NumberVector<?,?>>
Median Approach is used to discover spatial outliers with multiple
attributes.
|
class |
CTLuMoranScatterplotOutlier<N>
Moran scatterplot outliers, based on the standardized deviation from the
local and global means.
|
class |
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks.
|
class |
CTLuScatterplotOutlier<N>
Scatterplot-outlier is a spatial outlier detection method that performs a
linear regression of object attributes and their neighbors average value.
|
class |
CTLuZTestOutlier<N>
Detect outliers by comparing their attribute value to the mean and standard
deviation of their neighborhood.
|
class |
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers
Reference:
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 2005 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero. |
class |
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial
LOF variation. |
class |
TrimmedMeanApproach<N>
A Trimmed Mean Approach to Finding Spatial Outliers.
|
Modifier and Type | Class and Description |
---|---|
class |
ByLabelOutlier
Trivial algorithm that marks outliers by their label.
|
class |
TrivialAllOutlier
Trivial method that claims all objects to be outliers.
|
class |
TrivialNoOutlier
Trivial method that claims to find no outliers.
|
Modifier and Type | Class and Description |
---|---|
class |
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data
set.
|
class |
EvaluateRankingQuality<V extends NumberVector<V,?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|
class |
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries.
|