|
Class Summary |
| ByLabelClustering<O extends DatabaseObject> |
Pseudo clustering using labels. |
| ByLabelHierarchicalClustering<O extends DatabaseObject> |
Pseudo clustering using labels. |
| DBSCAN<O extends DatabaseObject,D extends Distance<D>> |
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
sets in a database. |
| DeLiClu<O extends NumberVector<O,?>,D extends Distance<D>> |
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
density-connected sets in a database. |
| EM<V extends NumberVector<V,?>> |
Provides the EM algorithm (clustering by expectation maximization). |
| KMeans<D extends Distance<D>,V extends NumberVector<V,?>> |
Provides the k-means algorithm. |
| OPTICS<O extends DatabaseObject,D extends Distance<D>> |
OPTICS provides the OPTICS algorithm. |
| ProjectedDBSCAN<V extends NumberVector<V,?>> |
Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor. |
| SLINK<O extends DatabaseObject,D extends Distance<D>> |
Efficient implementation of the Single-Link Algorithm SLINK of R. |
| SNNClustering<O extends DatabaseObject,D extends Distance<D>> |
Shared nearest neighbor clustering. |
| TrivialAllInOne<O extends DatabaseObject> |
Trivial pseudo-clustering that just considers all points to be one big
cluster. |
| TrivialAllNoise<O extends DatabaseObject> |
Trivial pseudo-clustering that just considers all points to be noise. |