Environment for
DeveLoping
KDD-Applications
Supported by Index-Structures

de.lmu.ifi.dbs.elki.algorithm.clustering
Class ProjectedDBSCAN<V extends NumberVector<V,?>>

java.lang.Object
  extended by de.lmu.ifi.dbs.elki.logging.AbstractLoggable
      extended by de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<V,Clustering<Model>>
          extended by de.lmu.ifi.dbs.elki.algorithm.clustering.ProjectedDBSCAN<V>
Type Parameters:
V - the type of NumberVector handled by this Algorithm
All Implemented Interfaces:
Algorithm<V,Clustering<Model>>, ClusteringAlgorithm<Clustering<Model>,V>, Parameterizable
Direct Known Subclasses:
FourC, PreDeCon

public abstract class ProjectedDBSCAN<V extends NumberVector<V,?>>
extends AbstractAlgorithm<V,Clustering<Model>>
implements ClusteringAlgorithm<Clustering<Model>,V>

Provides an abstract algorithm requiring a VarianceAnalysisPreprocessor.

Author:
Arthur Zimek

Field Summary
private  AbstractLocallyWeightedDistanceFunction<V,?> distanceFunction
          Holds the instance of the distance function specified by INNER_DISTANCE_FUNCTION_PARAM.
protected  DoubleDistance epsilon
          Holds the value of EPSILON_PARAM.
static OptionID EPSILON_ID
          OptionID for EPSILON_PARAM
private  DistanceParameter<DoubleDistance> EPSILON_PARAM
          Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to AbstractLocallyWeightedDistanceFunction.
static OptionID INNER_DISTANCE_FUNCTION_ID
          OptionID for INNER_DISTANCE_FUNCTION_PARAM
private  ObjectParameter<DistanceFunction<V,DoubleDistance>> INNER_DISTANCE_FUNCTION_PARAM
          Parameter distance function
private  DistanceFunction<V,DoubleDistance> innerDistanceFunction
          The inner distance function.
private  int lambda
          Holds the value of LAMBDA_PARAM.
static OptionID LAMBDA_ID
          OptionID for LAMBDA_PARAM
private  IntParameter LAMBDA_PARAM
          Parameter to specify the intrinsic dimensionality of the clusters to find, must be an integer greater than 0.
protected  int minpts
          Holds the value of MINPTS_PARAM.
static OptionID MINPTS_ID
          OptionID for MINPTS_PARAM
private  IntParameter MINPTS_PARAM
          Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0.
private  Set<Integer> noise
          Holds a set of noise.
static OptionID OUTER_DISTANCE_FUNCTION_ID
          OptionID for OUTER_DISTANCE_FUNCTION_PARAM
protected  ObjectParameter<AbstractLocallyWeightedDistanceFunction<V,?>> OUTER_DISTANCE_FUNCTION_PARAM
          Parameter to specify the distance function to determine the distance between database objects, must extend AbstractLocallyWeightedDistanceFunction .
private  Set<Integer> processedIDs
          Holds a set of processed ids.
private  List<List<Integer>> resultList
          Holds a list of clusters found.
 
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable
debug, logger
 
Constructor Summary
ProjectedDBSCAN(Parameterization config)
          Constructor, adhering to Parameterizable
 
Method Summary
protected  void expandCluster(Database<V> database, Integer startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
          ExpandCluster function of DBSCAN.
abstract  Class<?> preprocessorClass()
          Returns the class actually used as VarianceAnalysisPreprocessor.
protected  Clustering<Model> runInTime(Database<V> database)
          The run method encapsulated in measure of runtime.
 
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm
isTime, isVerbose, run, setTime, setVerbose
 
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm
run
 
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm
setTime, setVerbose
 

Field Detail

OUTER_DISTANCE_FUNCTION_ID

public static final OptionID OUTER_DISTANCE_FUNCTION_ID
OptionID for OUTER_DISTANCE_FUNCTION_PARAM


OUTER_DISTANCE_FUNCTION_PARAM

protected final ObjectParameter<AbstractLocallyWeightedDistanceFunction<V extends NumberVector<V,?>,?>> OUTER_DISTANCE_FUNCTION_PARAM
Parameter to specify the distance function to determine the distance between database objects, must extend AbstractLocallyWeightedDistanceFunction .

Key: -projdbscan.distancefunction

Default value: LocallyWeightedDistanceFunction


INNER_DISTANCE_FUNCTION_ID

public static final OptionID INNER_DISTANCE_FUNCTION_ID
OptionID for INNER_DISTANCE_FUNCTION_PARAM


INNER_DISTANCE_FUNCTION_PARAM

private final ObjectParameter<DistanceFunction<V extends NumberVector<V,?>,DoubleDistance>> INNER_DISTANCE_FUNCTION_PARAM
Parameter distance function


distanceFunction

private AbstractLocallyWeightedDistanceFunction<V extends NumberVector<V,?>,?> distanceFunction
Holds the instance of the distance function specified by INNER_DISTANCE_FUNCTION_PARAM.


EPSILON_ID

public static final OptionID EPSILON_ID
OptionID for EPSILON_PARAM


EPSILON_PARAM

private final DistanceParameter<DoubleDistance> EPSILON_PARAM
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to AbstractLocallyWeightedDistanceFunction.

Key: -projdbscan.epsilon


epsilon

protected DoubleDistance epsilon
Holds the value of EPSILON_PARAM.


LAMBDA_ID

public static final OptionID LAMBDA_ID
OptionID for LAMBDA_PARAM


LAMBDA_PARAM

private final IntParameter LAMBDA_PARAM
Parameter to specify the intrinsic dimensionality of the clusters to find, must be an integer greater than 0.

Key: -projdbscan.lambda


lambda

private int lambda
Holds the value of LAMBDA_PARAM.


MINPTS_ID

public static final OptionID MINPTS_ID
OptionID for MINPTS_PARAM


MINPTS_PARAM

private final IntParameter MINPTS_PARAM
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0.

Key: -projdbscan.minpts


minpts

protected int minpts
Holds the value of MINPTS_PARAM.


resultList

private List<List<Integer>> resultList
Holds a list of clusters found.


noise

private Set<Integer> noise
Holds a set of noise.


processedIDs

private Set<Integer> processedIDs
Holds a set of processed ids.


innerDistanceFunction

private DistanceFunction<V extends NumberVector<V,?>,DoubleDistance> innerDistanceFunction
The inner distance function.

Constructor Detail

ProjectedDBSCAN

public ProjectedDBSCAN(Parameterization config)
Constructor, adhering to Parameterizable

Parameters:
config - Parameterization
Method Detail

runInTime

protected Clustering<Model> runInTime(Database<V> database)
                               throws IllegalStateException
Description copied from class: AbstractAlgorithm
The run method encapsulated in measure of runtime. An extending class needs not to take care of runtime itself.

Specified by:
runInTime in class AbstractAlgorithm<V extends NumberVector<V,?>,Clustering<Model>>
Parameters:
database - the database to run the algorithm on
Returns:
the Result computed by this algorithm
Throws:
IllegalStateException - if the algorithm has not been initialized properly (e.g. the setParameters(String[]) method has been failed to be called).

expandCluster

protected void expandCluster(Database<V> database,
                             Integer startObjectID,
                             FiniteProgress objprog,
                             IndefiniteProgress clusprog)
ExpandCluster function of DBSCAN.

Parameters:
database - the database to run the algorithm on
startObjectID - the object id of the database object to start the expansion with
objprog - the progress object for logging the current status

preprocessorClass

public abstract Class<?> preprocessorClass()
Returns the class actually used as VarianceAnalysisPreprocessor.

Returns:
the class actually used as VarianceAnalysisPreprocessor

Release 0.3 (2010-03-31_1612)