|
|
|||||||||||||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||||||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O,R>
de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm<V,D,Clustering<MeanModel<V>>>
de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans<D,V>
D - a type of Distance as returned by the used distance
functionV - a type of NumberVector as a suitable datatype for this
algorithm@Title(value="K-Means")
@Description(value="Finds a partitioning into k clusters.")
@Reference(authors="J. MacQueen",
title="Some Methods for Classification and Analysis of Multivariate Observations",
booktitle="5th Berkeley Symp. Math. Statist. Prob., Vol. 1, 1967, pp 281-297",
url="http://projecteuclid.org/euclid.bsmsp/1200512992")
public class KMeans<D extends Distance<D>,V extends NumberVector<V,?>>Provides the k-means algorithm.
Reference: J. MacQueen: Some Methods for Classification and Analysis of
Multivariate Observations.
In 5th Berkeley Symp. Math. Statist. Prob., Vol. 1, 1967, pp 281-297.
| Field Summary | |
|---|---|
private int |
k
Holds the value of K_PARAM. |
static OptionID |
K_ID
OptionID for K_PARAM |
private IntParameter |
K_PARAM
Parameter to specify the number of clusters to find, must be an integer greater than 0. |
private int |
maxiter
Holds the value of MAXITER_PARAM. |
static OptionID |
MAXITER_ID
OptionID for MAXITER_PARAM |
private IntParameter |
MAXITER_PARAM
Parameter to specify the number of clusters to find, must be an integer greater or equal to 0, where 0 means no limit. |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID, DISTANCE_FUNCTION_PARAM |
| Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debug, logger |
| Constructor Summary | |
|---|---|
KMeans(Parameterization config)
Constructor, adhering to Parameterizable |
|
| Method Summary | |
|---|---|
protected List<V> |
means(List<List<Integer>> clusters,
List<V> means,
Database<V> database)
Returns the mean vectors of the given clusters in the given database. |
protected Clustering<MeanModel<V>> |
runInTime(Database<V> database)
Performs the k-means algorithm on the given database. |
protected List<List<Integer>> |
sort(List<V> means,
Database<V> database)
Returns a list of clusters. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
getDistanceFactory, getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
isTime, isVerbose, run, setTime, setVerbose |
| Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
|---|
run |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm |
|---|
setTime, setVerbose |
| Field Detail |
|---|
public static final OptionID K_ID
K_PARAM
private final IntParameter K_PARAM
Key: -kmeans.k
public static final OptionID MAXITER_ID
MAXITER_PARAM
private final IntParameter MAXITER_PARAM
Key: -kmeans.maxiter
private int k
K_PARAM.
private int maxiter
MAXITER_PARAM.
| Constructor Detail |
|---|
public KMeans(Parameterization config)
Parameterizable
config - Parameterization| Method Detail |
|---|
protected Clustering<MeanModel<V>> runInTime(Database<V> database)
throws IllegalStateException
runInTime in class AbstractAlgorithm<V extends NumberVector<V,?>,Clustering<MeanModel<V extends NumberVector<V,?>>>>database - the database to run the algorithm on
IllegalStateException - if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).
protected List<V> means(List<List<Integer>> clusters,
List<V> means,
Database<V> database)
clusters - the clusters to compute the meansmeans - the recent meansdatabase - the database containing the vectors
protected List<List<Integer>> sort(List<V> means,
Database<V> database)
means - a list of k meansdatabase - the database to cluster
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||