|
|
|||||||||||||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||||||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O,R>
de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm<O,D,Clustering<Model>>
de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN<O,D>
O - the type of DatabaseObject the algorithm is applied onD - the type of Distance used@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise")
@Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.")
@Reference(authors="M. Ester, H.-P. Kriegel, J. Sander, and X. Xu",
title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise",
booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96), Portland, OR, 1996",
url="http://dx.doi.org/10.1145/93605.98741")
public class DBSCAN<O extends DatabaseObject,D extends Distance<D>>DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
Reference:
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.
In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96),
Portland, OR, 1996.
| Field Summary | |
|---|---|
private D |
epsilon
Holds the value of EPSILON_PARAM. |
static OptionID |
EPSILON_ID
OptionID for EPSILON_PARAM |
private DistanceParameter<D> |
EPSILON_PARAM
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified. |
protected int |
minpts
Holds the value of MINPTS_PARAM. |
static OptionID |
MINPTS_ID
OptionID for MINPTS_PARAM |
private IntParameter |
MINPTS_PARAM
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
protected Set<Integer> |
noise
Holds a set of noise. |
protected Set<Integer> |
processedIDs
Holds a set of processed ids. |
protected List<List<Integer>> |
resultList
Holds a list of clusters found. |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID, DISTANCE_FUNCTION_PARAM |
| Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debug, logger |
| Constructor Summary | |
|---|---|
DBSCAN(Parameterization config)
Constructor, adhering to Parameterizable |
|
| Method Summary | |
|---|---|
protected void |
expandCluster(Database<O> database,
Integer startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster. |
protected Clustering<Model> |
runInTime(Database<O> database)
Performs the DBSCAN algorithm on the given database. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
getDistanceFactory, getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
isTime, isVerbose, run, setTime, setVerbose |
| Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
|---|
run |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm |
|---|
setTime, setVerbose |
| Field Detail |
|---|
public static final OptionID EPSILON_ID
EPSILON_PARAM
private final DistanceParameter<D extends Distance<D>> EPSILON_PARAM
Key: -dbscan.epsilon
private D extends Distance<D> epsilon
EPSILON_PARAM.
public static final OptionID MINPTS_ID
MINPTS_PARAM
private final IntParameter MINPTS_PARAM
Key: -dbscan.minpts
protected int minpts
MINPTS_PARAM.
protected List<List<Integer>> resultList
protected Set<Integer> noise
protected Set<Integer> processedIDs
| Constructor Detail |
|---|
public DBSCAN(Parameterization config)
Parameterizable
config - Parameterization| Method Detail |
|---|
protected Clustering<Model> runInTime(Database<O> database)
throws IllegalStateException
runInTime in class AbstractAlgorithm<O extends DatabaseObject,Clustering<Model>>database - the database to run the algorithm on
IllegalStateException - if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).
protected void expandCluster(Database<O> database,
Integer startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
database - the database on which the algorithm is runstartObjectID - potential seed of a new potential clusterobjprog - the progress object for logging the current status
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||