|
|
|||||||||||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O,R>
de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm<O,D,Clustering<Model>>
de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN<O,D>
O
- the type of DatabaseObject the algorithm is applied onD
- the type of Distance used@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise") @Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.") @Reference(authors="M. Ester, H.-P. Kriegel, J. Sander, and X. Xu", title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise", booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96), Portland, OR, 1996", url="http://dx.doi.org/10.1145/93605.98741") public class DBSCAN<O extends DatabaseObject,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
Reference:
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.
In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96),
Portland, OR, 1996.
Field Summary | |
---|---|
private D |
epsilon
Holds the value of EPSILON_PARAM . |
static OptionID |
EPSILON_ID
OptionID for EPSILON_PARAM |
private DistanceParameter<D> |
EPSILON_PARAM
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified. |
protected int |
minpts
Holds the value of MINPTS_PARAM . |
static OptionID |
MINPTS_ID
OptionID for MINPTS_PARAM |
private IntParameter |
MINPTS_PARAM
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
protected Set<Integer> |
noise
Holds a set of noise. |
protected Set<Integer> |
processedIDs
Holds a set of processed ids. |
protected List<List<Integer>> |
resultList
Holds a list of clusters found. |
Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
---|
DISTANCE_FUNCTION_ID, DISTANCE_FUNCTION_PARAM |
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debug, logger |
Constructor Summary | |
---|---|
DBSCAN(Parameterization config)
Constructor, adhering to Parameterizable |
Method Summary | |
---|---|
protected void |
expandCluster(Database<O> database,
Integer startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster. |
protected Clustering<Model> |
runInTime(Database<O> database)
Performs the DBSCAN algorithm on the given database. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
---|
getDistanceFactory, getDistanceFunction |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
isTime, isVerbose, run, setTime, setVerbose |
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
---|
run |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm |
---|
setTime, setVerbose |
Field Detail |
---|
public static final OptionID EPSILON_ID
EPSILON_PARAM
private final DistanceParameter<D extends Distance<D>> EPSILON_PARAM
Key: -dbscan.epsilon
private D extends Distance<D> epsilon
EPSILON_PARAM
.
public static final OptionID MINPTS_ID
MINPTS_PARAM
private final IntParameter MINPTS_PARAM
Key: -dbscan.minpts
protected int minpts
MINPTS_PARAM
.
protected List<List<Integer>> resultList
protected Set<Integer> noise
protected Set<Integer> processedIDs
Constructor Detail |
---|
public DBSCAN(Parameterization config)
Parameterizable
config
- ParameterizationMethod Detail |
---|
protected Clustering<Model> runInTime(Database<O> database) throws IllegalStateException
runInTime
in class AbstractAlgorithm<O extends DatabaseObject,Clustering<Model>>
database
- the database to run the algorithm on
IllegalStateException
- if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).protected void expandCluster(Database<O> database, Integer startObjectID, FiniteProgress objprog, IndefiniteProgress clusprog)
database
- the database on which the algorithm is runstartObjectID
- potential seed of a new potential clusterobjprog
- the progress object for logging the current status
|
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |