- e - Variable in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
Derived model parameters: e and e squared.
- e - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
-
Arrays for internal storage of eigenvalues.
- e - Variable in class de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
-
The (n x 1) - vector holding the estimated residuals (e1, ..., en)^T.
- e - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.AttributeModifier
-
Provides the attribute to be modified.
- e_czech - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult
-
The selection matrix of the strong eigenvectors.
- e_hat - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult
-
The selection matrix of the weak eigenvectors.
- EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalCosineEarthModel
-
Earth radius approximation in m.
- EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalHaversineEarthModel
-
Earth radius approximation in m.
- EARTH_RADIUS - Static variable in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalVincentyEarthModel
-
Earth radius approximation in m.
- EarthModel - Interface in de.lmu.ifi.dbs.elki.math.geodesy
-
API for handling different earth models.
- ecefToLatDeg(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatDeg(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude.
- ecefToLatLngDegHeight(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatLngDegHeight(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude, longitude and
height.
- ecefToLatLngRadHeight(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatLngRadHeight(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude, longitude and
height.
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLatRad(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding latitude.
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalCosineEarthModel
-
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalHaversineEarthModel
-
- ecefToLatRad(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.SphericalVincentyEarthModel
-
- ecefToLngDeg(double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLngDeg(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding longitude.
- ecefToLngRad(double, double) - Method in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
- ecefToLngRad(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.geodesy.EarthModel
-
Convert a 3D coordinate pair to the corresponding longitude.
- Eclat - Class in de.lmu.ifi.dbs.elki.algorithm.itemsetmining
-
Eclat is a depth-first discovery algorithm for mining frequent itemsets.
- Eclat(double, int, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
-
Constructor.
- Eclat.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.itemsetmining
-
Parameterization class.
- edit - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
-
Edit-Distance measures
- EDIT_CLEAR - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EDIT_FIND - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EDIT_REDO - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EDIT_UNDO - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EditDistance - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Edit distance measures.
- EditDistance(ClusterContingencyTable) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
- editDistanceFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing distance to transform second clustering to first
clustering (normalized, 0 = unequal)
- editDistanceSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing distance to transform second clustering to first
clustering (normalized, 0 = unequal)
- editFirst - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Edit operations for first clustering to second clustering.
- editItem - Variable in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
The "tabular edit" item.
- editOperationsBaseline - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Baseline for edit operations
- editOperationsBaseline() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the baseline editing Operations ( = total Objects)
- editOperationsFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing operations required to transform first clustering to
second clustering
- editOperationsSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Get the editing operations required to transform second clustering to
first clustering
- editSecond - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.EditDistance
-
Edit operations for second clustering to first clustering.
- EDRDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Edit Distance on Real Sequence distance for numerical vectors.
- EDRDistanceFunction(double, double) - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
-
Constructor.
- EDRDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Parameterization class.
- effectiveBandSize(int, int) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.AbstractEditDistanceFunction
-
Compute the effective band size.
- EigenPair - Class in de.lmu.ifi.dbs.elki.math.linearalgebra
-
Helper class which encapsulates an eigenvector and its corresponding
eigenvalue.
- EigenPair(Vector, double) - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenPair
-
Creates a new EigenPair object.
- EIGENPAIR_FILTER_ABSOLUTE - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.LimitEigenPairFilter
-
"absolute" Flag
- EIGENPAIR_FILTER_COMPOSITE_LIST - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.CompositeEigenPairFilter
-
The list of filters to use.
- EIGENPAIR_FILTER_DELTA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.LimitEigenPairFilter
-
Parameter delta
- EIGENPAIR_FILTER_N - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.FirstNEigenPairFilter
-
Paremeter n
- EIGENPAIR_FILTER_PALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.ProgressiveEigenPairFilter
-
Parameter progressive alpha.
- EIGENPAIR_FILTER_RALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.RelativeEigenPairFilter
-
Parameter relative alpha.
- EIGENPAIR_FILTER_WALPHA - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.WeakEigenPairFilter
-
- EigenPairFilter - Interface in de.lmu.ifi.dbs.elki.math.linearalgebra.pca
-
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors
and their corresponding eigenvalues) which are a result of a
Variance Analysis Algorithm, e.g.
- eigenPairFilter - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredRunner
-
- eigenPairFilter - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredRunner.Parameterizer
-
- eigenPairs - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
-
The eigenpairs in decreasing order.
- eigenPairs - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.SortedEigenPairs
-
The array of eigenpairs.
- eigenvalue - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenPair
-
The corresponding eigenvalue.
- EigenvalueDecomposition - Class in de.lmu.ifi.dbs.elki.math.linearalgebra
-
Eigenvalues and eigenvectors of a real matrix.
- EigenvalueDecomposition(Matrix) - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
-
Check for symmetry, then construct the eigenvalue decomposition
- eigenvalues - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
-
The eigenvalues in decreasing order.
- eigenValues() - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.SortedEigenPairs
-
Returns the sorted eigenvalues.
- eigenvector - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenPair
-
The eigenvector as a matrix.
- eigenvectors - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAResult
-
The eigenvectors in decreasing order to their corresponding eigenvalues.
- eigenVectors() - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.SortedEigenPairs
-
Returns the sorted eigenvectors.
- eigenVectors(int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.SortedEigenPairs
-
Returns the first n
sorted eigenvectors as a matrix.
- element - Variable in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Our element node.
- elementCoordinatesFromEvent(Element, Event) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPlot
-
Convert screen coordinates to element coordinates.
- elementCoordinatesFromEvent(Document, Element, Event) - Static method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGUtil
-
Convert the coordinates of an DOM Event from screen into element
coordinates.
- elementLine - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The line element
- elementPoint - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The drag handle element
- elements - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.MultivariateGaussianModel
-
Matrix element reference.
- elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
-
The covariance matrix.
- elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix
-
Array for internal storage of elements.
- elements - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Vector
-
Array for internal storage of elements.
- elems - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
-
All elements, in insertion order (and will not fail badly if concurrent
insertions happen).
- elemText - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The label element
- ELKILauncher - Class in de.lmu.ifi.dbs.elki.application
-
Class to launch ELKI.
- ELKILauncher() - Constructor for class de.lmu.ifi.dbs.elki.application.ELKILauncher
-
- ELKILogRecord - Class in de.lmu.ifi.dbs.elki.logging
-
- ELKILogRecord(Level, CharSequence) - Constructor for class de.lmu.ifi.dbs.elki.logging.ELKILogRecord
-
Constructor.
- ELKIServiceLoader - Class in de.lmu.ifi.dbs.elki.utilities
-
Class that emulates the behavior of an java ServiceLoader, except that the
classes are not automatically instantiated.
- ELKIServiceLoader() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceLoader
-
Constructor - do not use.
- ELKIServiceRegistry - Class in de.lmu.ifi.dbs.elki.utilities
-
Registry of available implementations in ELKI.
- ELKIServiceRegistry() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry
-
Do not use constructor.
- ELKIServiceRegistry.Entry - Class in de.lmu.ifi.dbs.elki.utilities
-
Entry in the service registry.
- ELKIServiceScanner - Class in de.lmu.ifi.dbs.elki.utilities
-
A collection of inspection-related utility functions.
- ELKIServiceScanner() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceScanner
-
Static methods only.
- ELKIServiceScanner.ClassSorter - Class in de.lmu.ifi.dbs.elki.utilities
-
Sort classes by their class name.
- ELKIServiceScanner.DirClassIterator - Class in de.lmu.ifi.dbs.elki.utilities
-
Class to iterate over a directory tree.
- ellipsoidVincentyFormulaDeg(double, double, double, double, double) - Static method in class de.lmu.ifi.dbs.elki.math.geodesy.SphereUtil
-
Compute the approximate great-circle distance of two points.
- ellipsoidVincentyFormulaRad(double, double, double, double, double) - Static method in class de.lmu.ifi.dbs.elki.math.geodesy.SphereUtil
-
Compute the approximate great-circle distance of two points.
- ellipticalArc(double, double, double, double, double, double, double) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- ellipticalArc(double, double, double, double, double, double[]) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- ellipticalArc(Vector, double, double, double, Vector) - Method in class de.lmu.ifi.dbs.elki.visualization.svg.SVGPath
-
Elliptical arc curve to the given coordinates.
- EM<V extends NumberVector,M extends MeanModel> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Clustering by expectation maximization (EM-Algorithm), also known as Gaussian
Mixture Modeling (GMM).
- EM(int, double, EMClusterModelFactory<V, M>, int, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.em.EM
-
Constructor.
- em - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier.Parameterizer
-
EM clustering algorithm to run.
- EM.Parameterizer<V extends NumberVector,M extends MeanModel> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Parameterization class.
- EM_DELTA_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C.Parameterizer
-
Threshold when to stop EM iterations.
- embedOrThumbnail(int, PlotItem, VisualizationTask, Element) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.OverviewPlot
-
Produce thumbnail for a visualizer.
- EMBLEM_IMPORTANT - Static variable in class de.lmu.ifi.dbs.elki.gui.icons.StockIcon
-
- EMBORDER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
-
Generic tags to indicate the type of element.
- emClustering - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier
-
Inner algorithm.
- EMClusterModel<M extends MeanModel> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Models useable in EM clustering.
- EMClusterModelFactory<V extends NumberVector,M extends MeanModel> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.em
-
Factory for initializing the EM models.
- EMClusterVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster
-
Visualizer for generating SVG-Elements containing ellipses for first, second
and third standard deviation.
- EMClusterVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization
-
Constructor
- EMClusterVisualization.Instance - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster
-
Instance.
- emDelta - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C
-
Threshold when to stop EM iterations.
- emDelta - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.P3C.Parameterizer
-
Threshold when to stop EM iterations.
- EMGOlivierNorbergEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Naive distribution estimation using mean and sample variance.
- EMGOlivierNorbergEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
-
Private constructor, use static instance!
- EMGOlivierNorbergEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- EMModel - Class in de.lmu.ifi.dbs.elki.data.model
-
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
- EMModel(Vector, Matrix) - Constructor for class de.lmu.ifi.dbs.elki.data.model.EMModel
-
Constructor.
- EMOutlier<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.clustering
-
outlier detection algorithm using EM Clustering.
- EMOutlier(EM<V, ?>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.clustering.EMOutlier
-
Constructor with an existing em clustering algorithm.
- EMOutlier.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.clustering
-
Parameterization class.
- EMPTY - Static variable in class de.lmu.ifi.dbs.elki.datasource.parser.ArffParser
-
Empty line pattern.
- EMPTY - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.Rec
-
Empty list.
- EMPTY_ALIASES - Static variable in class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
-
Reusable empty array.
- EMPTY_CHILDREN - Static variable in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
-
Constant for leaf nodes.
- EMPTY_DISTS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDList
-
Empty.
- EMPTY_ENUMERATION - Variable in class de.lmu.ifi.dbs.elki.index.tree.BreadthFirstEnumeration
-
Represents an empty enumeration.
- EMPTY_IDS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleIntegerDBIDList
-
Empty.
- EMPTY_INTS - Static variable in class de.lmu.ifi.dbs.elki.math.MathUtil
-
Empty integer array.
- EMPTY_ITERATOR - Static variable in class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs
-
Empty DBID iterator.
- EMPTY_ITERATOR - Static variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
-
Empty iterator.
- EMPTY_LABELS - Static variable in class de.lmu.ifi.dbs.elki.data.LabelList
-
Empty label list.
- EMPTY_PAGE - Static variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFile
-
Indicates an empty page.
- EMPTY_PAGE - Static variable in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFile
-
Indicates an empty page.
- EMPTY_STRING - Static variable in class de.lmu.ifi.dbs.elki.utilities.FormatUtil
-
Preallocated exceptions.
- EmptyDatabaseConnection - Class in de.lmu.ifi.dbs.elki.datasource
-
Pseudo database that is empty.
- EmptyDatabaseConnection() - Constructor for class de.lmu.ifi.dbs.elki.datasource.EmptyDatabaseConnection
-
Constructor.
- EmptyDBIDIterator() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
-
- EMPTYDBIDS - Static variable in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Final, global copy of empty DBIDs.
- EmptyDBIDs - Class in de.lmu.ifi.dbs.elki.database.ids
-
Empty DBID collection.
- EmptyDBIDs() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs
-
Constructor.
- EmptyDBIDs.EmptyDBIDIterator - Class in de.lmu.ifi.dbs.elki.database.ids
-
Iterator for empty DBIDs-
- emptyIterator() - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy
-
Get an empty hierarchy iterator.
- emptyPages - Variable in class de.lmu.ifi.dbs.elki.persistent.AbstractStoringPageFile
-
A stack holding the empty page ids.
- emptyPagesSize - Variable in class de.lmu.ifi.dbs.elki.index.tree.TreeIndexHeader
-
The number of bytes additionally needed for the listing of empty pages of
the headed page file.
- EmptyParameterization - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization
-
Parameterization handler that only allows the use of default values.
- EmptyParameterization() - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.EmptyParameterization
-
- enabled() - Method in interface de.lmu.ifi.dbs.elki.visualization.VisualizationMenuAction
-
Indicate if the menu option is enabled or greyed out.
- enabled() - Method in interface de.lmu.ifi.dbs.elki.visualization.VisualizationMenuToggle
-
Indicate if the menu option is enabled or greyed out.
- enabled() - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.actions.ClusterStyleAction.SetStyleAction
-
- enableExport(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the export menu.
- enableOverview(boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
Enable / disable the overview menu.
- enableStart() - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Enable capturing of 'mousedown' events.
- enableStop() - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Enable capturing of 'mousemove' and 'mouseup' events.
- ENABLEVIS_ID - Static variable in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer
-
Parameter to enable visualizers
Key: -vis.enable
Default: ELKI core
- enableVisualizers - Variable in class de.lmu.ifi.dbs.elki.visualization.VisualizerParameterizer.Parameterizer
-
Pattern to enable visualizers
- encoder - Variable in class de.lmu.ifi.dbs.elki.utilities.io.ByteArrayUtil.StringSerializer
-
Encoder.
- end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayModifiableIntegerDBIDs.Slice
-
Slice positions.
- end - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayStaticIntegerDBIDs.Slice
-
Slice positions.
- end() - Method in interface de.lmu.ifi.dbs.elki.logging.statistics.Duration
-
Finish the timer.
- end - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.MillisTimeDuration
-
Tracking variables.
- end() - Method in class de.lmu.ifi.dbs.elki.logging.statistics.MillisTimeDuration
-
- end - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
-
Tracking variables.
- end() - Method in class de.lmu.ifi.dbs.elki.logging.statistics.NanoDuration
-
- end - Variable in class de.lmu.ifi.dbs.elki.parallel.ParallelExecutor.BlockArrayRunner
-
End position
- end - Variable in class de.lmu.ifi.dbs.elki.utilities.io.LineReader
-
Current position, and length of buffer
- end - Variable in class de.lmu.ifi.dbs.elki.utilities.io.Tokenizer
-
Current positions of result and iterator.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in interface de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea.DragListener
-
Method called when a drag was ended.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.DragableArea
-
Method called when a drag was ended.
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotSelectionVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolAxisRangeVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolLineVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.MoveObjectsToolVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolCubeVisualization.Instance
-
- endDrag(SVGPoint, SVGPoint, Event, boolean) - Method in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolDotVisualization.Instance
-
- endindex - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi.SteepArea
-
End index of down-area
- endIndex - Variable in class de.lmu.ifi.dbs.elki.data.model.OPTICSModel
-
End index
- enlargement(SpatialComparable, SpatialComparable) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
-
Compute the enlargement obtained by adding an object to an existing object.
- enlargementScaled(SpatialComparable, SpatialComparable, double) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
-
Compute the enlargement obtained by adding an object to an existing object.
- EnsembleEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality
-
Ensemble estimator taking the median of three of our best estimators.
- EnsembleEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
-
- EnsembleVoting - Interface in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Interface for ensemble voting rules
- EnsembleVotingInverseMultiplicative - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Inverse multiplicative voting:
1-product(1-s_i)
- EnsembleVotingInverseMultiplicative() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingInverseMultiplicative
-
Constructor.
- EnsembleVotingInverseMultiplicative.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Parameterization class.
- EnsembleVotingMax - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the maximum.
- EnsembleVotingMax() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMax
-
Constructor.
- EnsembleVotingMean - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the mean
- EnsembleVotingMean() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMean
-
Constructor.
- EnsembleVotingMedian - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the median.
- EnsembleVotingMedian(double) - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMedian
-
Constructor.
- EnsembleVotingMedian.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Parameterization class.
- EnsembleVotingMin - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Simple combination rule, by taking the minimum.
- EnsembleVotingMin() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMin
-
Constructor.
- EnsembleVotingMultiplicative - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Inverse multiplicative voting:
product(s_i)
- EnsembleVotingMultiplicative() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ensemble.EnsembleVotingMultiplicative
-
Constructor.
- EnsembleVotingMultiplicative.Parameterizer - Class in de.lmu.ifi.dbs.elki.utilities.ensemble
-
Parameterization class.
- ensureArray(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Ensure that the given DBIDs are array-indexable.
- ensureBuffer(int, ByteBuffer, WritableByteChannel) - Method in class de.lmu.ifi.dbs.elki.datasource.bundle.BundleWriter
-
Ensure the buffer is large enough.
- ensureClusteringResult(Database, Result) - Static method in class de.lmu.ifi.dbs.elki.result.ResultUtil
-
Ensure that the result contains at least one Clustering.
- ensureCompleted(FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Increment a progress (unless null
).
- ensureCompleted(Logging) - Method in class de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress
-
Ensure that the progress was completed, to make progress bars disappear
- ensureModifiable(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Ensure modifiable.
- ensureSelectionResult(Database) - Static method in class de.lmu.ifi.dbs.elki.result.ResultUtil
-
Ensure that there also is a selection container object.
- ensureSet(DBIDs) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Ensure that the given DBIDs support fast "contains" operations.
- ensureSize() - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPNode
-
Ensure we have enough storage.
- ensureSize(int) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayModifiableIntegerDBIDs
-
Resize as desired.
- ensureSize(int) - Method in class de.lmu.ifi.dbs.elki.persistent.OnDiskArray
-
Ensure that the file can fit the given number of records.
- entries - Variable in class de.lmu.ifi.dbs.elki.index.tree.AbstractNode
-
The entries (children) of this node.
- entries - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.strategies.split.TopologicalSplitter.Split
-
The entries we process.
- entropy - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.ClusterContingencyTable
-
Entropy-based measures
- Entropy - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Entropy based measures.
- Entropy(ClusterContingencyTable) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Constructor.
- entropyConditionalFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the conditional entropy of the first clustering.
- entropyConditionalSecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the conditional entropy of the first clustering.
- entropyFirst - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Entropy in first
- entropyFirst() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the entropy of the first clustering using Log_2.
- entropyJoint - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Joint entropy
- entropyJoint() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the joint entropy of both clusterings (not normalized, 0 = equal)
- entropyMutualInformation() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the mutual information (not normalized, 0 = equal)
- entropyNMIJoint() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the joint-normalized mutual information (normalized, 0 = unequal)
- entropyNMIMax() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the max-normalized mutual information (normalized, 0 = unequal)
- entropyNMIMin() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the min-normalized mutual information (normalized, 0 = unequal)
- entropyNMISqrt() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the sqrt-normalized mutual information (normalized, 0 = unequal)
- entropyNMISum() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the sum-normalized mutual information (normalized, 0 = unequal)
- entropyPowers() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get Powers entropy (normalized, 0 = equal) Powers = 1 - NMI_Sum
- entropySecond - Variable in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Entropy in second
- entropySecond() - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.Entropy
-
Get the entropy of the second clustering using Log_2.
- Entry - Interface in de.lmu.ifi.dbs.elki.index.tree
-
Defines the requirements for an entry in an index structure.
- entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.IndexTreePath
-
The entry of this component.
- entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split.DistanceEntry
-
The entry of the Index.
- entry - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNQuery.DoubleDistanceEntry
-
Referenced entry
- Entry() - Constructor for class de.lmu.ifi.dbs.elki.utilities.ELKIServiceRegistry.Entry
-
- entry1 - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
-
The first entry of this pair.
- entry2 - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
-
The second entry of this pair.
- entrySet() - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.RectangleArranger
-
The items contained in the map.
- enumClass - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Reference to the actual enum type, for T.valueOf().
- EnumParameter<E extends Enum<E>> - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters
-
Parameter class for a parameter specifying an enum type.
- EnumParameter(OptionID, Class<E>, E) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and
default value.
- EnumParameter(OptionID, Class<E>, boolean) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and
default value.
- EnumParameter(OptionID, Class<E>) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.EnumParameter
-
Constructs an enum parameter with the given optionID, constraints and
default value.
- EnumParameterConfigurator - Class in de.lmu.ifi.dbs.elki.gui.configurator
-
Panel to configure EnumParameters by offering a dropdown to choose from.
- EnumParameterConfigurator(EnumParameter<?>, JComponent) - Constructor for class de.lmu.ifi.dbs.elki.gui.configurator.EnumParameterConfigurator
-
- EpanechnikovKernelDensityFunction - Class in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
-
Epanechnikov kernel density estimator.
- EpanechnikovKernelDensityFunction() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions.EpanechnikovKernelDensityFunction
-
Private, empty constructor.
- EpanechnikovKernelDensityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.kernelfunctions
-
Parameterization stub.
- eps - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES
-
The epsilon (in 2d) parameter
- eps - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.Parameterizer
-
Query radius
- EPS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.EigenvalueDecomposition
-
Epsilon.
- EPS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.SingularValueDecomposition
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.COPAC.Settings
-
Epsilon value for GDBSCAN.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.FourC.Settings
-
Query radius epsilon.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN.Parameterizer
-
Holds the epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.AbstractRangeQueryNeighborPredicate
-
Range to query with.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.AbstractRangeQueryNeighborPredicate.Parameterizer
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate.Instance
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate.Parameterizer
-
Range to query with
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS
-
Holds the maximum distance to search for objects (performance parameter)
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS.Parameterizer
-
Epsilon radius.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
-
Epsilon radius threshold.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering.Parameterizer
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Parameterizer
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PreDeCon.Settings
-
Query radius parameter epsilon.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU.Parameterizer
-
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCAN.Parameterizer
-
Epsilon radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate
-
Epsilon radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Instance
-
The epsilon distance a neighbor may have at most.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Parameterizer
-
Epsilon radius
- epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex
-
The epsilon value for each dimension.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory
-
The epsilon value for each dimension.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory.Parameterizer
-
The epsilon value for each dimension.
- epsilon - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
The current epsilon value.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN.Parameterizer
-
Parameter to specify the maximum radius of the neighborhood to be
considered, must be suitable to the distance function specified.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.AbstractOPTICS.Parameterizer
-
Parameter to specify the maximum radius of the neighborhood to be
considered, must be suitable to the distance function specified.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering.Parameterizer
-
Parameter to specify the minimum SNN density, must be an integer greater
than 0.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Parameterizer
-
Parameter that specifies the maximum radius of the neighborhood to be
considered in each dimension for determination of the preference vector,
must be a double equal to or greater than 0.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC.Parameterizer
-
Parameter to specify the maximum distance between two vectors with equal
preference vectors before considering them as parallel, must be a double
equal to or greater than 0.
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.SUBCLU
-
- EPSILON_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.DiSHPreferenceVectorIndex.Factory
-
A comma separated list of positive doubles specifying the maximum radius
of the neighborhood to be considered in each dimension for determination
of the preference vector (default is
DiSHPreferenceVectorIndex.Factory.DEFAULT_EPSILON
in each
dimension).
- EpsilonNeighborPredicate<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
The default DBSCAN and OPTICS neighbor predicate, using an
epsilon-neighborhood.
- EpsilonNeighborPredicate(double, DistanceFunction<? super O>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.EpsilonNeighborPredicate
-
Full constructor.
- EpsilonNeighborPredicate.Instance - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Instance for a particular data set.
- EpsilonNeighborPredicate.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Parameterization class
- epsilons - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.KernelDensityEstimator
-
Epsilon values for different subspace dimensionalities
- epsilonsq - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.COPACNeighborPredicate
-
Squared value of epsilon.
- epsilonsq - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain.FDBSCANNeighborPredicate.Instance
-
The epsilon distance a neighbor may have at most.
- equal(DBIDRef, DBIDRef) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDFactory
-
Compare two DBIDs, for equality testing.
- equal(DBIDRef, DBIDRef) - Static method in class de.lmu.ifi.dbs.elki.database.ids.DBIDUtil
-
Test two DBIDs for equality.
- equal(DBIDRef, DBIDRef) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.AbstractIntegerDBIDFactory
-
- equal(long[], long[]) - Static method in class de.lmu.ifi.dbs.elki.utilities.BitsUtil
-
Test two bitsets for equality
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.CASHInterval
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu.SpatialObjectPair
-
equals is used in updating the heap!
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSHeapEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.DenseItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.OneItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.SmallDenseItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.SparseItemset
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.Individuum
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.BitVector
-
Indicates whether some other object is "equal to" this BitVector.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.ClassLabel
-
Any ClassLabel should ensure a natural ordering that is consistent with
equals.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.ExternalID
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.HyperBoundingBox
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.SimpleClassLabel
-
Any ClassLabel should ensure a natural ordering that is consistent with
equals.
- equals(SpatialComparable, SpatialComparable) - Static method in class de.lmu.ifi.dbs.elki.data.spatial.SpatialUtil
-
Test two SpatialComparables for equality.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.data.Subspace
-
Indicates if the specified object is equal to this subspace, i.e. if the
specified object is a Subspace and is built of the same dimensions than
this subspace.
- equals(Object) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBID
-
Deprecated.
- equals(Object) - Method in interface de.lmu.ifi.dbs.elki.database.ids.DBIDRef
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.EmptyDBIDs.EmptyDBIDIterator
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.ArrayStaticIntegerDBIDs.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBID
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBID.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDPair
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDRange.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.database.ids.integer.IntegerDBIDVar.Itr
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.adapter.AbstractSimilarityAdapter
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.ArcCosineDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.HistogramIntersectionDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.HSBHistogramQuadraticDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram.RGBHistogramQuadraticDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.AbsolutePearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.AbsoluteUncenteredCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.PearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.SquaredPearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.SquaredUncenteredCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.UncenteredCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.WeightedPearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.correlation.WeightedSquaredPearsonCorrelationDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.CosineDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedDoubleDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.DiskCacheBasedFloatDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedDoubleDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.external.FileBasedFloatDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.DimensionSelectingLatLngDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.LatLngDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.geo.LngLatDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.HistogramMatchDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.histogram.KolmogorovSmirnovDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.LPNormDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.ManhattanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MaximumDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MinimumDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SquaredEuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedEuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedLPNormDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedManhattanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedMaximumDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedSquaredEuclideanDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.ChiSquaredDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.JeffreyDivergenceDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceAsymmetricDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic.SqrtJensenShannonDivergenceDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.RandomStableDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.AbstractDimensionsSelectingDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.subspace.OnedimensionalDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.AbstractEditDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.EDRDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.LCSSDistanceFunction
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments.Segment
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.DistanceResultAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.FilteredDistanceResultAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.OutlierScoreAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.adapter.SimpleAdapter
-
Deprecated.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.AbstractDirectoryEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.AbstractLeafEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.AbstractNode
-
Returns true
if this == o
has the value
true
or o is not null and o is of the same class as this
instance and super.equals(o)
returns true
and
both nodes are of the same type (leaf node or directory node) and have
contain the same entries, false
otherwise.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.IndexTreePath
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
-
Returns true if this object is the same as the o argument;
false
otherwise.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCoPDirectoryEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCoPLeafEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxDirectoryEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxLeafEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabDirectoryEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabLeafEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.MTreeDirectoryEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.MTreeLeafEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.query.DoubleDistanceSearchCandidate
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.query.GenericMTreeDistanceSearchCandidate
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn.RdKNNDirectoryEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn.RdKNNLeafEntry
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.Vector
-
- equals(double[], double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Compare for equality.
- equals(double[][], double[][]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Test for equality
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.persistent.AbstractExternalizablePage
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.DoublePriorityObject
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.datastructures.heap.IntegerPriorityObject
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleDoublePair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleIntPair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.DoubleObjPair
-
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.IntDoublePair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.IntIntPair
-
Trivial equals implementation
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.utilities.pairs.Pair
-
Simple equals statement.
- equals(Object) - Method in class de.lmu.ifi.dbs.elki.visualization.VisualizationTask
-
- EqualSizeGlobalConstraint - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints
-
Global parameter constraint defining that a number of list parameters (
ListParameter
) must have equal list sizes.
- EqualSizeGlobalConstraint(ListParameter<?, ?>...) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.EqualSizeGlobalConstraint
-
Creates a global parameter constraint for testing if a number of list
parameters have equal list sizes.
- EqualStringConstraint - Class in de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints
-
Represents a parameter constraint for testing if the string value of the
string parameter (
StringParameter
) to be tested is equal to the specified constraint-strings.
- EqualStringConstraint(String[]) - Constructor for class de.lmu.ifi.dbs.elki.utilities.optionhandling.constraints.EqualStringConstraint
-
Creates an Equal-To-String parameter constraint.
- equationsToString(String, int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(String, NumberFormat) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(NumberFormat) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- equationsToString(int) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.LinearEquationSystem
-
Returns a string representation of this equation system.
- erf(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Error function for Gaussian distributions = Normal distributions.
- ERFAPP_A - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erf approximation.
- ERFAPP_B - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erf approximation.
- ERFAPP_C - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erf approximation.
- ERFAPP_D - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erf approximation.
- ERFAPP_P - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erf approximation.
- ERFAPP_Q - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erf approximation.
- erfc(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Complementary error function for Gaussian distributions = Normal
distributions.
- ErfcStddevWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Gaussian Error Function Weight function, scaled using stddev.
- ErfcStddevWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ErfcStddevWeight
-
- ErfcWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Gaussian Error Function Weight function, scaled such that the result it 0.1
at distance == max
erfc(1.1630871536766736 * distance / max)
The value of 1.1630871536766736 is erfcinv(0.1), to achieve the intended
scaling.
- ErfcWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ErfcWeight
-
- erfinv(double) - Static method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Inverse error function.
- ERFINV_A - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erfinv approximation, rational version
- ERFINV_B - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erfinv approximation, rational version
- ERFINV_C - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erfinv approximation, rational version
- ERFINV_D - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.NormalDistribution
-
Coefficients for erfinv approximation, rational version
- ERiC<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Performs correlation clustering on the data partitioned according to local
correlation dimensionality and builds a hierarchy of correlation clusters
that allows multiple inheritance from the clustering result.
- ERiC(ERiC.Settings) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC
-
Constructor.
- ERiC.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Parameterization class.
- ERiC.Settings - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Class to wrap the ERiC settings.
- ERiC.Settings.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.correlation
-
Parameterization class.
- ERiCNeighborPredicate<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
ERiC neighborhood predicate.
- ERiCNeighborPredicate(ERiC.Settings) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.ERiCNeighborPredicate
-
Constructor.
- ERiCNeighborPredicate.Instance - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Instance for a particular data set.
- ERiCNeighborPredicate.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan
-
Parameterization class.
- ERPDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Edit Distance With Real Penalty distance for numerical vectors.
- ERPDistanceFunction(double, double) - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries.ERPDistanceFunction
-
Constructor.
- ERPDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries
-
Parameterization class.
- err - Variable in class de.lmu.ifi.dbs.elki.logging.CLISmartHandler
-
Output stream for error output.
- ERR_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Vector
-
Error message (in assertions!)
- ERR_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message (in assertions!)
- ERR_MATRIX_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix
-
Error when matrix dimensions do not agree.
- ERR_MATRIX_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message (in assertions!)
- ERR_MATRIX_INNERDIM - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix
-
Error when matrix inner dimensions do not agree.
- ERR_MATRIX_INNERDIM - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Vector
-
Error message (in assertions!)
- ERR_MATRIX_INNERDIM - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message (in assertions!)
- ERR_NOTRECTANGULAR - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix
-
Error: matrix not rectangular.
- ERR_REINDEX - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Matrix
-
Error: matrix indexes incorrect
- ERR_TOO_LITTLE_WEIGHT - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix
-
Error message reported when too little data (weight <= 1) in matrix.
- ERR_VEC_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.Vector
-
Error message (in assertions!)
- ERR_VEC_DIMENSIONS - Static variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Error message (in assertions!)
- errformat - Variable in class de.lmu.ifi.dbs.elki.gui.util.LogPane
-
Formatter for error messages
- errformat - Variable in class de.lmu.ifi.dbs.elki.logging.CLISmartHandler
-
Formatter for error messages
- error(CharSequence, Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log a message at the 'severe' level.
- error(CharSequence) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log a message at the 'severe' level.
- ErrorFormatter - Class in de.lmu.ifi.dbs.elki.logging
-
Format a log record for error output, including a stack trace if available.
- ErrorFormatter() - Constructor for class de.lmu.ifi.dbs.elki.logging.ErrorFormatter
-
Constructor.
- errors - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.AbstractParameterization
-
Errors
- errors - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.UnParameterization
-
Errors
- errorsTo(Parameterization) - Method in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ChainedParameterization
-
Set the error target, since there is no unique way where
errors can be reported.
- errorTarget - Variable in class de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.ChainedParameterization
-
Error target
- errorVector(V) - Method in class de.lmu.ifi.dbs.elki.data.model.CorrelationAnalysisSolution
-
Returns the error vectors after projection.
- errStyle - Variable in class de.lmu.ifi.dbs.elki.gui.util.LogPane
-
Error message style
- esq - Variable in class de.lmu.ifi.dbs.elki.math.geodesy.AbstractEarthModel
-
Derived model parameters: e and e squared.
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractExpMADEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLMMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMADEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMeanVarianceEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMOMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMADEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMeanVarianceEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMOMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.DistributionEstimator
-
General form of the parameter estimation
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaChoiWetteEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceMLEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogGammaChoiWetteEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLevenbergMarquardtKDEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.BestFitEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.TrimmedEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta.WinsorisingEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLevenbergMarquardtKDEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighMLEEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
-
- estimate(double, double, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformEnhancedMinMaxEstimator
-
Estimate from simple characteristics.
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
- estimate(DoubleMinMax) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
Estimate parameters from minimum and maximum observed.
- estimate(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMinMaxEstimator
-
Estimate parameters from minimum and maximum observed.
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WaldMLEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLogMOMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.AbstractIntrinsicDimensionalityEstimator
-
- estimate(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.AbstractIntrinsicDimensionalityEstimator
-
- estimate(double[], int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.AbstractIntrinsicDimensionalityEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.AggregatedHillEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.EnsembleEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.GEDEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.HillEstimator
-
- estimate(A, NumberArrayAdapter<?, A>) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(double[], int) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.IntrinsicDimensionalityEstimator
-
Estimate from a distance list.
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.LMomentsEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.MOMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.PWM2Estimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.PWMEstimator
-
- estimate(A, NumberArrayAdapter<?, A>, int) - Method in class de.lmu.ifi.dbs.elki.math.statistics.intrinsicdimensionality.ZipfEstimator
-
- estimateDensities(Relation<O>, KNNQuery<O>, DBIDs, WritableDataStore<double[]>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.KDEOS
-
Perform the kernel density estimation step.
- estimateDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.DiagonalGaussianModel
-
- estimateDensity(NumberVector) - Method in interface de.lmu.ifi.dbs.elki.algorithm.clustering.em.EMClusterModel
-
Estimate the likelihood of a vector.
- estimateDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.MultivariateGaussianModel
-
- estimateDensity(NumberVector) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.em.SphericalGaussianModel
-
- estimateEigenvalue(double[][], double[]) - Method in class de.lmu.ifi.dbs.elki.datasource.filter.transform.FastMultidimensionalScalingTransform
-
Estimate the (singed!)
- estimateFromExpMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractExpMADEstimator
-
- estimateFromExpMedianMAD(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExpMADDistributionEstimator
-
General form of the parameter estimation
- estimateFromExpMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogGammaAlternateExpMADEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedExtremeValueLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedLogisticAlternateLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GeneralizedParetoLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GumbelLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceLMMEstimator
-
- estimateFromLMoments(double[]) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LMMDistributionEstimator
-
Estimate from the L-Moments.
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogisticLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalBilkovaLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.SkewGNormalLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformLMMEstimator
-
- estimateFromLMoments(double[]) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLMMEstimator
-
- estimateFromLogMeanVariance(MeanVariance, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMeanVarianceEstimator
-
Estimate the distribution from mean and variance.
- estimateFromLogMeanVariance(MeanVariance, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogGammaLogMOMEstimator
-
- estimateFromLogMeanVariance(MeanVariance, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLogMOMEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMADEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogGammaLogMADEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMADDistributionEstimator
-
General form of the parameter estimation
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogNormalLogMADEstimator
-
- estimateFromLogMedianMAD(double, double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WeibullLogMADEstimator
-
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMeanVarianceEstimator
-
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractLogMOMEstimator
-
- estimateFromLogStatisticalMoments(StatisticalMoments, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogMOMDistributionEstimator
-
General form of the parameter estimation
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMeanVarianceEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaMOMEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MeanVarianceDistributionEstimator
-
Estimate the distribution from mean and variance.
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMOMEstimator
-
- estimateFromMeanVariance(MeanVariance) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.WaldMOMEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.CauchyMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GammaMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.GumbelMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LaplaceMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogisticMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.LogLogisticMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MADDistributionEstimator
-
General form of the parameter estimation
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.NormalMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.RayleighMADEstimator
-
- estimateFromMedianMAD(double, double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.UniformMADEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMeanVarianceEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.AbstractMOMEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.EMGOlivierNorbergEstimator
-
- estimateFromStatisticalMoments(StatisticalMoments) - Method in interface de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.MOMDistributionEstimator
-
General form of the parameter estimation
- EstimateIntrinsicDimensionality<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Estimate global average intrinsic dimensionality of a data set.
- EstimateIntrinsicDimensionality(DistanceFunction<? super O>, IntrinsicDimensionalityEstimator, double, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality
-
Constructor.
- EstimateIntrinsicDimensionality.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Parameterization class.
- estimateViewport() - Method in class de.lmu.ifi.dbs.elki.visualization.projections.AffineProjection
-
- estimateViewport() - Method in interface de.lmu.ifi.dbs.elki.visualization.projections.Projection2D
-
Estimate the viewport requirements
- estimateViewport() - Method in class de.lmu.ifi.dbs.elki.visualization.projections.Simple2D
-
- estimateY(Matrix) - Method in class de.lmu.ifi.dbs.elki.math.statistics.MultipleLinearRegression
-
Perform an estimation of y on the specified matrix.
- estimateY(double) - Method in class de.lmu.ifi.dbs.elki.math.statistics.PolynomialRegression
-
Performs an estimation of y on the specified x value.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality
-
Estimation method.
- estimator - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality.Parameterizer
-
Estimation method.
- ESTIMATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.EstimateIntrinsicDimensionality.Parameterizer
-
Estimation method
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseBetaNormalization
-
Stores the distribution estimators
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseBetaNormalization.Parameterizer
-
Stores the distribution estimators
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization
-
Stores the distribution estimators
- estimators - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise.AttributeWiseCDFNormalization.Parameterizer
-
Stores the distribution estimators
- etag - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotSelectionVisualization.Instance
-
Element for the events
- etag - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolAxisRangeVisualization.Instance
-
Element for the rectangle to add listeners
- etag - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.selection.SelectionToolLineVisualization.Instance
-
Element for the rectangle to add listeners
- etag - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.MoveObjectsToolVisualization.Instance
-
Element for the rectangle to add listeners
- etag - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolCubeVisualization.Instance
-
Element for the rectangle to add listeners.
- etag - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.SelectionToolDotVisualization.Instance
-
Element for the rectangle to add listeners
- EUCLIDEAN_KAPPA - Static variable in class de.lmu.ifi.dbs.elki.visualization.svg.SVGHyperSphere
-
Factor used for approximating circles with cubic beziers.
- EuclideanDistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski
-
- EuclideanDistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.EuclideanDistanceFunction
-
- EuclideanDistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski
-
Parameterization class.
- EuclideanHashFunctionFamily - Class in de.lmu.ifi.dbs.elki.index.lsh.hashfamilies
-
2-stable hash function family for Euclidean distances.
- EuclideanHashFunctionFamily(RandomFactory, double, int) - Constructor for class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.EuclideanHashFunctionFamily
-
Constructor.
- EuclideanHashFunctionFamily.Parameterizer - Class in de.lmu.ifi.dbs.elki.index.lsh.hashfamilies
-
Parameterization class.
- euclideanLength() - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.Vector
-
Returns the length of this vector.
- euclideanLength(double[]) - Static method in class de.lmu.ifi.dbs.elki.math.linearalgebra.VMath
-
Euclidean length of the vector
- EuclideanRStarTreeKNNQuery<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
-
Instance of a KNN query for a particular spatial index.
- EuclideanRStarTreeKNNQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
-
Constructor.
- EuclideanRStarTreeRangeQuery<O extends NumberVector> - Class in de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query
-
Instance of a range query for a particular spatial index.
- EuclideanRStarTreeRangeQuery(AbstractRStarTree<?, ?, ?>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeRangeQuery
-
Constructor.
- EULERS_CONST - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
-
Euler–Mascheroni constant
- eval(double, double[]) - Method in interface de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.FittingFunction
-
Compute value at position x as well as gradients for the parameters
- eval(double, double[]) - Method in class de.lmu.ifi.dbs.elki.math.linearalgebra.fitting.GaussianFittingFunction
-
compute the mixture of Gaussians at the given position
- evals - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
-
The data input configured
- evals - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.OutputTabPanel
-
Algorithm step to run on.
- evalTab - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.MultiStepGUI
-
Evaluation panel.
- evaluate(Cluster<?>, DoubleDBIDList) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AbstractScoreEvaluation
-
- evaluate(DBIDs, DoubleDBIDList) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AbstractScoreEvaluation
-
- evaluate(DBIDs, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AbstractScoreEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AveragePrecisionEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.MaximumF1Evaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.PrecisionAtKEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation
-
- evaluate(ScoreEvaluation.Predicate<? super I>, I) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Evaluate a given predicate and iterator.
- evaluate(Cluster<?>, DoubleDBIDList) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Evaluate given a cluster (of positive elements) and a scoring list.
- evaluate(DBIDs, DoubleDBIDList) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Evaluate given a list of positives and a scoring.
- evaluate(DBIDs, OutlierResult) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Evaluate given a set of positives and a scoring.
- EvaluateCIndex<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the C-index of a data set.
- EvaluateCIndex(DistanceFunction<? super O>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
-
Constructor.
- EvaluateCIndex.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateClustering - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Evaluate a clustering result by comparing it to an existing cluster label.
- EvaluateClustering(ClusteringAlgorithm<?>, boolean, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.EvaluateClustering
-
Constructor.
- evaluateClustering(Database, Relation<? extends O>, DistanceQuery<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateCIndex
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<O>, DistanceQuery<O>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
-
Evaluate a single clustering.
- evaluateClustering(Database, Relation<? extends NumberVector>, Clustering<?>) - Method in class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
-
Evaluate a single clustering.
- EvaluateClustering.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Parameterization class.
- EvaluateClustering.ScoreResult - Class in de.lmu.ifi.dbs.elki.evaluation.clustering
-
Result object for outlier score judgements.
- evaluateClusters(ArrayList<PROCLUS<V>.PROCLUSCluster>, long[][], Relation<V>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.PROCLUS
-
Evaluates the quality of the clusters.
- EvaluateConcordantPairs<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Gamma Criterion of a data set.
- EvaluateConcordantPairs(PrimitiveDistanceFunction<? super NumberVector>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateConcordantPairs
-
Constructor.
- EvaluateConcordantPairs.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateDaviesBouldin - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Davies-Bouldin index of a data set.
- EvaluateDaviesBouldin(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateDaviesBouldin
-
Constructor.
- EvaluateDaviesBouldin.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateIntrinsicDimensionalityEstimators - Class in de.lmu.ifi.dbs.elki.application.experiments
-
Class for testing the estimation quality of intrinsic dimensionality
estimators.
- EvaluateIntrinsicDimensionalityEstimators(int, int, int, int, EvaluateIntrinsicDimensionalityEstimators.Aggregate, EvaluateIntrinsicDimensionalityEstimators.OutputFormat, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.application.experiments.EvaluateIntrinsicDimensionalityEstimators
-
Constructor.
- EvaluateIntrinsicDimensionalityEstimators.Aggregate - Enum in de.lmu.ifi.dbs.elki.application.experiments
-
Aggregation methods.
- EvaluateIntrinsicDimensionalityEstimators.OutputFormat - Enum in de.lmu.ifi.dbs.elki.application.experiments
-
Output format
- EvaluateIntrinsicDimensionalityEstimators.Parameterizer - Class in de.lmu.ifi.dbs.elki.application.experiments
-
Parameterization class.
- evaluateKNN(double[], ModifiableDoubleDBIDList, Relation<?>, TObjectIntHashMap<Object>, Object) - Method in class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRetrievalPerformance.KNNEvaluator
-
Evaluate by simulating kNN classification for k=1...maxk
- evaluateOrderingResult(int, SetDBIDs, DBIDs) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.OutlierRankingEvaluation
-
- evaluateOutlierResult(Database, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.histogram.ComputeOutlierHistogram
-
Evaluate a single outlier result as histogram.
- evaluateOutlierResult(int, SetDBIDs, OutlierResult) - Method in class de.lmu.ifi.dbs.elki.evaluation.outlier.OutlierRankingEvaluation
-
- EvaluatePBMIndex - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the PBM of a data set
Reference:
M.
- EvaluatePBMIndex(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluatePBMIndex
-
Constructor.
- EvaluatePBMIndex.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluatePrecomputedOutlierScores - Class in de.lmu.ifi.dbs.elki.application.greedyensemble
-
Class to load an outlier detection summary file, as produced by
ComputeKNNOutlierScores
, and compute popular evaluation metrics for
it.
- EvaluatePrecomputedOutlierScores(InputStep, Pattern, File, String) - Constructor for class de.lmu.ifi.dbs.elki.application.greedyensemble.EvaluatePrecomputedOutlierScores
-
Constructor.
- EvaluatePrecomputedOutlierScores.Parameterizer - Class in de.lmu.ifi.dbs.elki.application.greedyensemble
-
Parameterization class.
- EvaluateRankingQuality<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Evaluate a distance function with respect to kNN queries.
- EvaluateRankingQuality(DistanceFunction<? super V>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRankingQuality
-
Constructor.
- EvaluateRankingQuality.Parameterizer<V extends NumberVector> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Parameterization class.
- EvaluateRetrievalPerformance<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Evaluate a distance functions performance by computing the mean average
precision, ROC, and NN classification performance when ranking the objects by
distance.
- EvaluateRetrievalPerformance(DistanceFunction<? super O>, double, RandomFactory, boolean, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.statistics.EvaluateRetrievalPerformance
-
Constructor.
- EvaluateRetrievalPerformance.KNNEvaluator - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Evaluate kNN retrieval performance.
- EvaluateRetrievalPerformance.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Parameterization class.
- EvaluateRetrievalPerformance.RetrievalPerformanceResult - Class in de.lmu.ifi.dbs.elki.algorithm.statistics
-
Result object for MAP scores.
- EvaluateSilhouette<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the silhouette of a data set.
- EvaluateSilhouette(DistanceFunction<? super O>, NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
-
Constructor.
- EvaluateSilhouette(DistanceFunction<? super O>, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSilhouette
-
Constructor.
- EvaluateSilhouette.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateSimplifiedSilhouette - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the simplified silhouette of a data set.
- EvaluateSimplifiedSilhouette(NumberVectorDistanceFunction<?>, NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSimplifiedSilhouette
-
Constructor.
- EvaluateSimplifiedSilhouette.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateSquaredErrors - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Evaluate a clustering by reporting the squared errors (SSE, SSQ), as used by
k-means.
- EvaluateSquaredErrors(NumberVectorDistanceFunction<?>, NoiseHandling) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateSquaredErrors
-
Constructor.
- EvaluateSquaredErrors.Parameterizer - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- EvaluateVarianceRatioCriteria<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Compute the Variance Ratio Criteria of a data set.
- EvaluateVarianceRatioCriteria(NoiseHandling, boolean) - Constructor for class de.lmu.ifi.dbs.elki.evaluation.clustering.internal.EvaluateVarianceRatioCriteria
-
Constructor.
- EvaluateVarianceRatioCriteria.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.evaluation.clustering.internal
-
Parameterization class.
- Evaluation(ResultHierarchy, List<Evaluator>) - Constructor for class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Evaluation
-
Constructor.
- evaluationName - Variable in class de.lmu.ifi.dbs.elki.evaluation.classification.ConfusionMatrixEvaluationResult
-
Holds the used EvaluationProcedure.
- EvaluationResult - Class in de.lmu.ifi.dbs.elki.result
-
Abstract evaluation result.
- EvaluationResult(String, String) - Constructor for class de.lmu.ifi.dbs.elki.result.EvaluationResult
-
Constructor.
- EvaluationResult.Measurement - Class in de.lmu.ifi.dbs.elki.result
-
Class representing a single measurement.
- EvaluationResult.MeasurementGroup - Class in de.lmu.ifi.dbs.elki.result
-
A group of evaluation measurements.
- evaluationStep - Variable in class de.lmu.ifi.dbs.elki.KDDTask
-
The evaluation step.
- evaluationStep - Variable in class de.lmu.ifi.dbs.elki.KDDTask.Parameterizer
-
- EvaluationStep - Class in de.lmu.ifi.dbs.elki.workflow
-
The "evaluation" step, where data is analyzed.
- EvaluationStep(List<Evaluator>) - Constructor for class de.lmu.ifi.dbs.elki.workflow.EvaluationStep
-
Constructor.
- EvaluationStep.Evaluation - Class in de.lmu.ifi.dbs.elki.workflow
-
Class to handle running the evaluators on a database instance.
- EvaluationStep.Parameterizer - Class in de.lmu.ifi.dbs.elki.workflow
-
Parameterization class.
- EvaluationTabPanel - Class in de.lmu.ifi.dbs.elki.gui.multistep.panels
-
Panel to handle result evaluation
- EvaluationTabPanel(InputTabPanel, AlgorithmTabPanel) - Constructor for class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
-
Constructor.
- EvaluationVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
-
Pseudo-Visualizer, that lists the cluster evaluation results found.
- EvaluationVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.EvaluationVisualization
-
Constructor.
- Evaluator - Interface in de.lmu.ifi.dbs.elki.evaluation
-
Interface for post-algorithm evaluations, such as histograms, outlier score
evaluations, ...
- EVALUATOR_ID - Static variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Parameterizer
-
Parameter ID to specify the evaluators to run.
- evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Evaluation
-
Evaluators to run.
- evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep
-
Evaluators to run.
- evaluators - Variable in class de.lmu.ifi.dbs.elki.workflow.EvaluationStep.Parameterizer
-
Evaluators to run
- Event() - Constructor for enum de.lmu.ifi.dbs.elki.datasource.bundle.BundleStreamSource.Event
-
- eventarea - Variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.optics.OPTICSPlotCutVisualization.Instance
-
Sensitive (clickable) area
- eventManager - Variable in class de.lmu.ifi.dbs.elki.database.AbstractDatabase
-
The event manager, collects events and fires them on demand.
- EvolutionarySearch(Relation<V>, ArrayList<ArrayList<DBIDs>>, int, Random) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.AggarwalYuEvolutionary.EvolutionarySearch
-
Constructor.
- EVT_DBLCLICK_DELAY - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.pairsegments.CircleSegmentsVisualizer.Instance.SegmentListenerProxy
-
Mouse double click time window in milliseconds
TODO: does Batik have double click events?
- exact - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Compute exactly (slower).
- exact - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses.Parameterizer
-
Exactness flag.
- EXACT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Flag to compute exact value range for binning.
- exactMinMax(Relation<O>, DistanceQuery<O>) - Method in class de.lmu.ifi.dbs.elki.algorithm.statistics.DistanceStatisticsWithClasses
-
Compute the exact maximum and minimum.
- exception(CharSequence, Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log a message with exception at the 'severe' level.
- exception(Throwable) - Method in class de.lmu.ifi.dbs.elki.logging.Logging
-
Log an exception at the 'severe' level.
- exception(Throwable) - Static method in class de.lmu.ifi.dbs.elki.logging.LoggingUtil
-
Static version to log a severe exception.
- exception(String, Throwable) - Static method in class de.lmu.ifi.dbs.elki.logging.LoggingUtil
-
Static version to log a severe exception.
- ExceptionMessages - Interface in de.lmu.ifi.dbs.elki.utilities.exceptions
-
Interface to collect exception messages that are used in several cases.
- excessOfMass() - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction.TempCluster
-
Excess of mass measure.
- excludeNotCovered(ModifiableDoubleDBIDList, double, ModifiableDoubleDBIDList) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree
-
Retain all elements within the current cover.
- execute() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.ParameterTabPanel
-
Execute the task.
- executed - Variable in class de.lmu.ifi.dbs.elki.gui.multistep.panels.InputTabPanel
-
Signal when an database input has been executed.
- executeResize(double) - Method in class de.lmu.ifi.dbs.elki.visualization.batikutil.LazyCanvasResizer
-
Callback function that needs to be overridden with actual implementations.
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.AlgorithmTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.EvaluationTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.InputTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.LoggingTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.OutputTabPanel
-
- executeStep() - Method in class de.lmu.ifi.dbs.elki.gui.multistep.panels.ParameterTabPanel
-
Execute the configured step.
- Executor - Interface in de.lmu.ifi.dbs.elki.parallel
-
Processor executor.
- executor - Variable in class de.lmu.ifi.dbs.elki.parallel.ParallelCore
-
Executor service.
- existed - Variable in class de.lmu.ifi.dbs.elki.persistent.OnDiskArrayPageFile
-
Whether or not the file originally existed
- existed - Variable in class de.lmu.ifi.dbs.elki.persistent.PersistentPageFile
-
Whether we are initializing from an existing file.
- existing - Variable in class de.lmu.ifi.dbs.elki.data.ClassLabel.Factory
-
Set for reusing the same objects.
- existing - Variable in class de.lmu.ifi.dbs.elki.database.relation.ConvertToStringView
-
The database we use
- exp - Variable in class de.lmu.ifi.dbs.elki.result.EvaluationResult.Measurement
-
Observed value, minimum, maximum, expected value.
- expandCluster(Relation<O>, RangeQuery<O>, DBIDRef, FiniteProgress, IndefiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN
-
DBSCAN-function expandCluster.
- expandCluster(DBIDRef, int, WritableIntegerDataStore, T, ArrayModifiableDBIDs, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.GeneralizedDBSCAN.Instance
-
Set-based expand cluster implementation.
- expandCluster(int, WritableIntegerDataStore, KNNQuery<O>, DBIDs, double, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.LSDBC
-
Set-based expand cluster implementation.
- expandCluster(SimilarityQuery<O>, DBIDRef, FiniteProgress, IndefiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering
-
DBSCAN-function expandCluster adapted to SNN criterion.
- expandClusterOrder(DBID, ClusterOrder, DistanceQuery<V>, FiniteProgress) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.FastOPTICS
-
OPTICS algorithm for processing a point, but with different density
estimates
- expandClusterOrder(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSHeap.Instance
-
OPTICS-function expandClusterOrder.
- expandClusterOrder(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSList.Instance
-
OPTICS-function expandClusterOrder.
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO.Instance
-
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.GeneralizedOPTICS.Instance
-
Add the current DBID to the cluster order, and expand its neighbors if
minPts and similar conditions are satisfied.
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH.Instance
-
- expandDBID(DBIDRef) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.HiSC.Instance
-
- expandDirNodes(SpatialPrimitiveDistanceFunction<NV>, DeLiCluNode, DeLiCluNode) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
-
Expands the specified directory nodes.
- expanded - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu.DeLiCluTree
-
Holds the ids of the expanded nodes.
- expandLeafNodes(SpatialPrimitiveDistanceFunction<NV>, DeLiCluNode, DeLiCluNode, DataStore<KNNList>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
-
Expands the specified leaf nodes.
- expandNode(O, KNNHeap, ComparableMinHeap<DoubleDistanceSearchCandidate>, double, int) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.EuclideanRStarTreeKNNQuery
-
- expandNode(O, KNNHeap, ComparableMinHeap<DoubleDistanceSearchCandidate>, double, int) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query.RStarTreeKNNQuery
-
- expandNodes(DeLiCluTree, SpatialPrimitiveDistanceFunction<NV>, DeLiClu<NV>.SpatialObjectPair, DataStore<KNNList>) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.DeLiClu
-
Expands the spatial nodes of the specified pair.
- expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree
-
Constant expansion rate. 2 would be the intuitive value, but the original
version used 1.3, so we copy this.
- expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory
-
Constant expansion rate. 2 would be the intuitive value, but the original
version used 1.3, so we copy this.
- expansion - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Parameterizer
-
Expansion rate.
- EXPANSION_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.covertree.AbstractCoverTree.Factory.Parameterizer
-
Expansion rate of the tree (going upward).
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP
-
Expected amount of outliers.
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
-
Expected amount of outliers.
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier
-
Expected share of outliers.
- expect - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier.Parameterizer
-
Expected share of outliers
- EXPECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
-
Expected share of outliers.
- EXPECT_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.trivial.TrivialGeneratedOutlier.Parameterizer
-
Expected share of outliers
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.AveragePrecisionEvaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.MaximumF1Evaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.PrecisionAtKEvaluation
-
- expected(int, int) - Method in class de.lmu.ifi.dbs.elki.evaluation.scores.ROCEvaluation
-
- expected(int, int) - Method in interface de.lmu.ifi.dbs.elki.evaluation.scores.ScoreEvaluation
-
Expected score for a random result.
- expirePage(P) - Method in class de.lmu.ifi.dbs.elki.persistent.LRUCache
-
Write page through to disk.
- explain - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredAutotuningRunner.Cand
-
Score
- explainedVariance - Variable in class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.PCAFilteredResult
-
The amount of Variance explained by strong Eigenvalues
- ExpMADDistributionEstimator<D extends Distribution> - Interface in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Distribuition estimators that use the method of moments (MOM) in
exponentiated data.
- EXPONENT_OVERFLOW - Static variable in class de.lmu.ifi.dbs.elki.utilities.FormatUtil
-
Preallocated exceptions.
- ExponentialDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Exponential distribution.
- ExponentialDistribution(double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution(double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentialDistribution
-
Constructor.
- ExponentialDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Parameterization class
- ExponentialLMMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
- ExponentialLMMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialLMMEstimator
-
Constructor.
- ExponentialLMMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentiallyModifiedGaussianDistribution - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution)
is a combination of a normal distribution and an exponential distribution.
- ExponentiallyModifiedGaussianDistribution(double, double, double, Random) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution(double, double, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution(double, double, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.ExponentiallyModifiedGaussianDistribution
-
Constructor for ExGaussian distribution
- ExponentiallyModifiedGaussianDistribution.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution
-
Parameterization class
- ExponentialMADEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using Median and MAD.
- ExponentialMADEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMADEstimator
-
Private constructor, use static instance!
- ExponentialMADEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialMedianEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using Median and MAD.
- ExponentialMedianEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMedianEstimator
-
Private constructor, use static instance!
- ExponentialMedianEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialMOMEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Estimate Exponential distribution parameters using the mean, which is the
maximum-likelihood estimate (MLE), but not very robust.
- ExponentialMOMEstimator() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.ExponentialMOMEstimator
-
Private constructor, use static instance!
- ExponentialMOMEstimator.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator
-
Parameterization class.
- ExponentialStddevWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Exponential Weight function, scaled such that the result it 0.1 at distance
== max
stddev * exp(-.5 * distance/stddev)
This is similar to the Gaussian weight function, except distance/stddev is
not squared.
- ExponentialStddevWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ExponentialStddevWeight
-
- ExponentialWeight - Class in de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions
-
Exponential Weight function, scaled such that the result it 0.1 at distance
== max
exp(-2.3025850929940455 * distance/max)
This is similar to the Gaussian weight function, except distance/max is not
squared
- ExponentialWeight() - Constructor for class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.weightfunctions.ExponentialWeight
-
- EXPONENTS_ID - Static variable in class tutorial.distancefunction.MultiLPNorm.Parameterizer
-
Option ID for the exponents
-multinorm.ps
- exportItem - Variable in class de.lmu.ifi.dbs.elki.visualization.gui.ResultWindow.DynamicMenu
-
The "Export" button, to save the image
- ExportVisualizations - Class in de.lmu.ifi.dbs.elki.visualization
-
Class that automatically generates all visualizations and exports them into
SVG files.
- ExportVisualizations(File, VisualizerParameterizer, double) - Constructor for class de.lmu.ifi.dbs.elki.visualization.ExportVisualizations
-
Constructor.
- ExportVisualizations.Parameterizer - Class in de.lmu.ifi.dbs.elki.visualization
-
Parameterization class
- extend(SpatialComparable) - Method in class de.lmu.ifi.dbs.elki.data.ModifiableHyperBoundingBox
-
Extend the bounding box by some other spatial object.
- extend(A, ArrayAdapter<T, A>, T) - Static method in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
-
Static wrapper that has a nicer generics signature.
- ExtendedArray<T> - Class in de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike
-
Class to extend an array with a single element virtually.
- ExtendedArray(Object, ArrayAdapter<T, Object>, T) - Constructor for class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
-
Constructor.
- ExtendedNeighborhood - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Neighborhood obtained by computing the k-fold closure of an existing
neighborhood.
- ExtendedNeighborhood(DataStore<DBIDs>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood
-
Constructor.
- ExtendedNeighborhood.Factory<O> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Factory class.
- ExtendedNeighborhood.Factory.Parameterizer<O> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Parameterization class.
- extendMBR(SpatialComparable) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.SpatialDirectoryEntry
-
Extend the MBR of this node.
- extendNeighborhood(Database, Relation<? extends O>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExtendedNeighborhood.Factory
-
Method to load the external neighbors.
- EXTENSION - Static variable in class de.lmu.ifi.dbs.elki.result.textwriter.MultipleFilesOutput
-
File name extension.
- ExternalClustering - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.meta
-
- ExternalClustering(File) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.meta.ExternalClustering
-
Constructor.
- ExternalClustering.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.meta
-
Parameterization class
- ExternalDoubleOutlierScore - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
-
External outlier detection scores, loading outlier scores from an external
file.
- ExternalDoubleOutlierScore(File, Pattern, Pattern, boolean, ScalingFunction) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.ExternalDoubleOutlierScore
-
Constructor.
- ExternalDoubleOutlierScore.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.meta
-
Parameterization class
- ExternalID - Class in de.lmu.ifi.dbs.elki.data
-
External ID objects.
- ExternalID(String) - Constructor for class de.lmu.ifi.dbs.elki.data.ExternalID
-
Constructor.
- EXTERNALID - Static variable in class de.lmu.ifi.dbs.elki.data.type.TypeUtil
-
External ID type.
- EXTERNALID_INDEX_ID - Static variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter.Parameterizer
-
Parameter that specifies the index of the label to be used as external
Id, starting at 0.
- ExternalIDFilter - Class in de.lmu.ifi.dbs.elki.datasource.filter.typeconversions
-
Class that turns a label column into an external ID column.
- ExternalIDFilter(int) - Constructor for class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter
-
Constructor.
- ExternalIDFilter.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource.filter.typeconversions
-
Parameterization class.
- externalIdIndex - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter
-
The index of the label to be used as external Id.
- externalIdIndex - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.typeconversions.ExternalIDFilter.Parameterizer
-
- ExternalIDJoinDatabaseConnection - Class in de.lmu.ifi.dbs.elki.datasource
-
Joins multiple data sources by their label
- ExternalIDJoinDatabaseConnection(List<ObjectFilter>, List<DatabaseConnection>) - Constructor for class de.lmu.ifi.dbs.elki.datasource.ExternalIDJoinDatabaseConnection
-
Constructor.
- ExternalIDJoinDatabaseConnection.Parameterizer - Class in de.lmu.ifi.dbs.elki.datasource
-
Parameterization class.
- ExternalizablePage - Interface in de.lmu.ifi.dbs.elki.persistent
-
Base interface for externalizable pages.
- ExternalNeighborhood - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
A precomputed neighborhood, loaded from an external file.
- ExternalNeighborhood(DataStore<DBIDs>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.ExternalNeighborhood
-
Constructor.
- ExternalNeighborhood.Factory - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Factory class.
- ExternalNeighborhood.Factory.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood
-
Parameterization class.
- extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike.ExtendedArray
-
The extra element
- extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrAnc
-
Additional object to return as first result.
- extra - Variable in class de.lmu.ifi.dbs.elki.utilities.datastructures.hierarchy.HashMapHierarchy.ItrDesc
-
Additional object to return as first result.
- EXTRA_INTEGRITY_CHECKS - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTree
-
Debugging flag: do extra integrity checks.
- EXTRA_INTEGRITY_CHECKS - Static variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.AbstractRStarTree
-
Development flag: This will enable some extra integrity checks on the tree.
- extract(int, int, int, boolean, FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
-
Extract itemsets ending in the given item.
- extract(int, int, int, int, int[], int, int[], int[], boolean, FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
-
Extract itemsets ending in the given item.
- extractClusters(DBIDs, DBIDDataStore, DoubleDataStore) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.ExtractFlatClusteringFromHierarchy
-
Extract all clusters from the pi-lambda-representation.
- extractClusters(DBIDs, DBIDDataStore, DoubleDataStore, DoubleDataStore) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.HDBSCANHierarchyExtraction
-
Extract all clusters from the pi-lambda-representation.
- extractClusters(DBIDs, DBIDDataStore, DoubleDataStore, DoubleDataStore) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.SimplifiedHierarchyExtraction
-
Extract all clusters from the pi-lambda-representation.
- extractClusters(ClusterOrder, Relation<?>, double, int) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.optics.OPTICSXi
-
Extract clusters from a cluster order result.
- extractClusters(Relation<V>, DiSH.DiSHClusterOrder) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.DiSH
-
Extracts the clusters from the cluster order.
- extractCorrelationClusters(Clustering<Model>, Relation<V>, int, ERiCNeighborPredicate<V>.Instance) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.ERiC
-
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
- ExtractFlatClusteringFromHierarchy - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction
-
Extract a flat clustering from a full hierarchy, represented in pointer form.
- ExtractFlatClusteringFromHierarchy(HierarchicalClusteringAlgorithm, int, ExtractFlatClusteringFromHierarchy.OutputMode, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.ExtractFlatClusteringFromHierarchy
-
Constructor.
- ExtractFlatClusteringFromHierarchy(HierarchicalClusteringAlgorithm, double, ExtractFlatClusteringFromHierarchy.OutputMode, boolean) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction.ExtractFlatClusteringFromHierarchy
-
Constructor.
- ExtractFlatClusteringFromHierarchy.OutputMode - Enum in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction
-
Output mode.
- ExtractFlatClusteringFromHierarchy.Parameterizer - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction
-
Parameterization class.
- ExtractFlatClusteringFromHierarchy.ThresholdMode - Enum in de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction
-
Threshold mode.
- extractItemsets(DBIDs[], int, int, List<Itemset>) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
-
- extractItemsets(DBIDs, DBIDs[], int[], int, int, int, List<Itemset>) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.Eclat
-
- extractLinear(int, int, int, int, int, int[], int, int[], FPGrowth.FPTree.Collector) - Method in class de.lmu.ifi.dbs.elki.algorithm.itemsetmining.FPGrowth.FPTree
-
Extract itemsets from a linear tree.
- extremum_alpha_n(int, double[]) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
-
Determines the value for alpha_n where this function has a (local)
extremum.
- extremumType - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
-
Holds the type of the global extremum.
- extremumType(int, double[], HyperBoundingBox) - Method in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction
-
Returns the type of the extremum at the specified alpha values.
- ExtremumType() - Constructor for enum de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash.ParameterizationFunction.ExtremumType
-