Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace.clique |
Helper classes for the
CLIQUE algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.datastore |
General data store layer API (along the lines of
Map<DBID, T> - use everywhere!) |
de.lmu.ifi.dbs.elki.database.datastore.memory |
Memory data store implementation for ELKI.
|
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.generic |
Database object identification and ID group handling - generic implementations.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views).
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction |
Similarity functions.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.evaluation.scores |
Evaluation of rankings and scorings.
|
de.lmu.ifi.dbs.elki.evaluation.scores.adapter |
Adapter classes for ranking and scoring measures.
|
de.lmu.ifi.dbs.elki.index |
Index structure implementations
|
de.lmu.ifi.dbs.elki.index.lsh |
Locality Sensitive Hashing
|
de.lmu.ifi.dbs.elki.index.preprocessed.fastoptics |
Preprocessed index used by the FastOPTICS algorithm.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.preference |
Indexes storing preference vectors.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.covertree |
Cover-tree variations.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
Metrical index structures based on the concepts of the M-Tree
supporting processing of reverse k nearest neighbor queries by
using the k-nn distances of the entries.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.deliclu | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.flat | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rstar | |
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.spacefillingcurves |
Space filling curves.
|
de.lmu.ifi.dbs.elki.parallel |
Parallel processing core for ELKI.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.outlier |
Outlier result classes
|
de.lmu.ifi.dbs.elki.visualization.style |
Style management for ELKI visualizations.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Method and Description |
---|---|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids)
Runs the pca on the given set of IDs.
|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids,
Vector centroid)
Runs the pca on the given set of IDs and for the given centroid.
|
Modifier and Type | Method and Description |
---|---|
static ArrayModifiableDBIDs[] |
ClusteringAlgorithmUtil.partitionsFromIntegerLabels(DBIDs ids,
IntegerDataStore assignment,
int k)
Collect clusters from their [0;k-1] integer labels.
|
Modifier and Type | Method and Description |
---|---|
private MaterializedRelation<ParameterizationFunction> |
CASH.buildDB(int dim,
Matrix basis,
DBIDs ids,
Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
the specified subspace.
|
private Database |
CASH.buildDerivatorDB(Relation<ParameterizationFunction> relation,
DBIDs ids)
Builds a database for the derivator consisting of the ids in the specified
interval.
|
private LMCLUS.Separation |
LMCLUS.findSeparation(Relation<NumberVector> relation,
DBIDs currentids,
int dimension,
Random r)
This method samples a number of linear manifolds an tries to determine
which the one with the best cluster is.
|
private void |
CASH.initHeap(ObjectHeap<IntegerPriorityObject<CASHInterval>> heap,
Relation<ParameterizationFunction> relation,
int dim,
DBIDs ids)
Initializes the heap with the root intervals.
|
private LinearEquationSystem |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dimensionality,
DBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
Modifier and Type | Method and Description |
---|---|
ModifiableDBIDs |
CASHIntervalSplit.determineIDs(DBIDs superSetIDs,
HyperBoundingBox interval,
double d_min,
double d_max)
Determines the ids belonging to the given interval, i.e. the
parameterization functions falling within the interval.
|
void |
CASHInterval.removeIDs(DBIDs ids2)
Removes the specified ids from this interval.
|
Modifier and Type | Class and Description |
---|---|
static class |
COPACNeighborPredicate.COPACModel
Model used by COPAC for core point property.
|
Modifier and Type | Field and Description |
---|---|
protected DBIDs |
EpsilonNeighborPredicate.Instance.ids
DBIDs to process
|
protected DBIDs |
AbstractRangeQueryNeighborPredicate.Instance.ids
DBIDs to process
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
NeighborPredicate.Instance.getIDs()
Get the IDs the predicate is defined for.
|
DBIDs |
EpsilonNeighborPredicate.Instance.getIDs() |
DBIDs |
AbstractRangeQueryNeighborPredicate.Instance.getIDs() |
DBIDs |
ERiCNeighborPredicate.Instance.getNeighbors(DBIDRef reference) |
Modifier and Type | Method and Description |
---|---|
protected int |
LSDBC.expandCluster(int clusterid,
WritableIntegerDataStore clusterids,
KNNQuery<O> knnq,
DBIDs neighbors,
double maxkdist,
FiniteProgress progress)
Set-based expand cluster implementation.
|
private void |
LSDBC.fillDensities(KNNQuery<O> knnq,
DBIDs ids,
WritableDoubleDataStore dens)
Collect all densities into an array for sorting.
|
boolean |
MinPtsCorePredicate.Instance.isCorePoint(DBIDRef point,
DBIDs neighbors) |
private boolean |
LSDBC.isLocalMaximum(double kdist,
DBIDs neighbors,
WritableDoubleDataStore kdists)
Test if a point is a local density maximum.
|
DBIDIter |
ERiCNeighborPredicate.Instance.iterDBIDs(DBIDs neighbors) |
Constructor and Description |
---|
Instance(DBIDs ids,
DataStore<COPACNeighborPredicate.COPACModel> storage)
Constructor.
|
Instance(DBIDs ids,
DataStore<M> storage)
Constructor.
|
Instance(DBIDs ids,
DataStore<PCAFilteredResult> storage,
Relation<? extends NumberVector> relation)
Constructor.
|
Instance(DBIDs ids,
DataStore<PreDeConNeighborPredicate.PreDeConModel> storage)
Constructor.
|
Instance(DBIDs ids,
DataStore<PreDeConNeighborPredicate.PreDeConModel> storage)
Constructor.
|
Instance(double epsilon,
RangeQuery<?> rq,
DBIDs ids)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DBIDs |
PointerHierarchyRepresentationResult.ids
The DBIDs in this result.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
PointerHierarchyRepresentationResult.getDBIDs()
Get the clustered DBIDs.
|
Modifier and Type | Method and Description |
---|---|
protected WritableDoubleDataStore |
AbstractHDBSCAN.computeCoreDists(DBIDs ids,
KNNQuery<O> knnQ,
int minPts)
Compute the core distances for all objects.
|
private void |
SLINKHDBSCANLinearMemory.step2(DBIDRef id,
DBIDs processedIDs,
DistanceQuery<? super O> distQuery,
DoubleDataStore coredists,
WritableDoubleDataStore m)
Second step: Determine the pairwise distances from all objects in the
pointer representation to the new object with the specified id.
|
private void |
SLINKHDBSCANLinearMemory.step3(DBIDRef id,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
DBIDs processedIDs,
WritableDoubleDataStore m)
Third step: Determine the values for P and L
|
private void |
SLINKHDBSCANLinearMemory.step4(DBIDRef id,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
DBIDs processedIDs)
Fourth step: Actualize the clusters if necessary
|
Constructor and Description |
---|
PointerDensityHierarchyRepresentationResult(DBIDs ids,
DBIDDataStore parent,
DoubleDataStore parentDistance,
DoubleDataStore coreDistance)
Constructor.
|
PointerHierarchyRepresentationResult(DBIDs ids,
DBIDDataStore parent,
DoubleDataStore parentDistance)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
SimplifiedHierarchyExtraction.TempCluster.addDBIDs(DBIDs ids)
Add new objects to the cluster.
|
private Clustering<DendrogramModel> |
ExtractFlatClusteringFromHierarchy.extractClusters(DBIDs ids,
DBIDDataStore pi,
DoubleDataStore lambda)
Extract all clusters from the pi-lambda-representation.
|
private Clustering<DendrogramModel> |
HDBSCANHierarchyExtraction.extractClusters(DBIDs ids,
DBIDDataStore pi,
DoubleDataStore lambda,
DoubleDataStore coredist)
Extract all clusters from the pi-lambda-representation.
|
private Clustering<DendrogramModel> |
SimplifiedHierarchyExtraction.extractClusters(DBIDs ids,
DBIDDataStore pi,
DoubleDataStore lambda,
DoubleDataStore coredist)
Extract all clusters from the pi-lambda-representation.
|
private Cluster<DendrogramModel> |
ExtractFlatClusteringFromHierarchy.makeCluster(DBIDRef lead,
double depth,
DBIDs members)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
protected double |
CLARA.assignRemainingToNearestCluster(ArrayDBIDs means,
DBIDs ids,
DBIDs rids,
WritableIntegerDataStore assignment,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected double |
KMedoidsPAM.assignToNearestCluster(ArrayDBIDs means,
DBIDs ids,
WritableDoubleDataStore nearest,
WritableDoubleDataStore second,
WritableIntegerDataStore assignment,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected boolean |
KMeansBatchedLloyd.assignToNearestCluster(Relation<V> relation,
DBIDs ids,
List<? extends NumberVector> oldmeans,
double[][] meanshift,
int[] changesize,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
protected void |
KMedoidsPAM.runPAMOptimization(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment)
Run the PAM optimization phase.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
FarthestSumPointsInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
RandomlyChosenInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distanceFunction) |
DBIDs |
FirstKInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distanceFunction) |
DBIDs |
KMeansPlusPlusInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
PAMInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
FarthestPointsInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
KMedoidsInitialization.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super V> distanceFunction)
Choose initial means
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
FarthestSumPointsInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
RandomlyChosenInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distanceFunction) |
DBIDs |
FirstKInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distanceFunction) |
DBIDs |
KMeansPlusPlusInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
PAMInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
FarthestPointsInitialMeans.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super O> distQ) |
DBIDs |
KMedoidsInitialization.chooseInitialMedoids(int k,
DBIDs ids,
DistanceQuery<? super V> distanceFunction)
Choose initial means
|
protected <T> double |
KMeansPlusPlusInitialMeans.initialWeights(WritableDoubleDataStore weights,
DBIDs ids,
T latest,
DistanceQuery<? super T> distQ)
Initialize the weight list.
|
protected <T> double |
KMeansPlusPlusInitialMeans.updateWeights(WritableDoubleDataStore weights,
DBIDs ids,
T latest,
DistanceQuery<? super T> distQ)
Update the weight list.
|
Modifier and Type | Field and Description |
---|---|
(package private) DBIDs |
OPTICSList.Instance.ids
IDs to process.
|
(package private) DBIDs |
GeneralizedOPTICS.Instance.ids
IDs to process.
|
private DBIDs |
OPTICSHeap.Instance.ids
IDs to process.
|
Modifier and Type | Field and Description |
---|---|
(package private) DataStore<? extends DBIDs> |
FastOPTICS.neighs
neighbors of a point
|
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
ClusterOrder.order(DBIDs ids)
Use the cluster order to sort the given collection ids.
|
Constructor and Description |
---|
ClusterOrder(DBIDs ids,
String name,
String shortname)
Constructor
|
Modifier and Type | Field and Description |
---|---|
(package private) DBIDs |
P3C.Signature.ids
Object ids.
|
Modifier and Type | Method and Description |
---|---|
private DBIDs |
PROCLUS.computeBadMedoids(ArrayDBIDs m_current,
ArrayList<PROCLUS.PROCLUSCluster> clusters,
int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
specified threshold of objects is bad.
|
Modifier and Type | Method and Description |
---|---|
private double |
PROCLUS.avgDistance(Vector centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the
specified dimension.
|
private ArrayDBIDs |
PROCLUS.computeM_current(DBIDs m,
DBIDs m_best,
DBIDs m_bad,
Random random)
Computes the set of medoids in current iteration.
|
private boolean |
DOC.dimensionIsRelevant(int dimension,
Relation<V> relation,
DBIDs points)
Utility method to test if a given dimension is relevant as determined via a
set of reference points (i.e. if the variance along the attribute is lower
than the threshold).
|
private DataStore<DoubleDBIDList> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V> distFunc,
RangeQuery<V> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
private ArrayDBIDs |
PROCLUS.greedy(DistanceQuery<V> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set.
|
private ArrayList<P3C.ClusterCandidate> |
P3C.hardClustering(WritableDataStore<double[]> probClusterIGivenX,
List<P3C.Signature> clusterCores,
DBIDs dbids)
Creates a hard clustering from the specified soft membership matrix.
|
private ArrayDBIDs |
PROCLUS.initialSet(DBIDs sampleSet,
int k,
Random random)
Returns a set of k elements from the specified sample set.
|
private Cluster<SubspaceModel> |
DOC.makeCluster(Relation<V> relation,
DBIDs C,
long[] D)
Utility method to create a subspace cluster from a list of DBIDs and the
relevant attributes.
|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
protected HashSetModifiableDBIDs |
P3C.unionDBIDs(DBIDs[] parts,
int start,
int end)
Compute the union of multiple DBID sets.
|
Constructor and Description |
---|
Signature(int[] spec,
DBIDs ids)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
CLIQUEUnit.getIds()
Returns the ids of the feature vectors this unit contains.
|
Modifier and Type | Method and Description |
---|---|
private HashMap<String,DBIDs> |
ByLabelClustering.multipleAssignment(Relation<?> data)
Assigns the objects of the database to multiple clusters according to their
labels.
|
private HashMap<String,DBIDs> |
ByLabelClustering.singleAssignment(Relation<?> data)
Assigns the objects of the database to single clusters according to their
labels.
|
Modifier and Type | Method and Description |
---|---|
private void |
ByLabelHierarchicalClustering.assign(HashMap<String,DBIDs> labelMap,
String label,
DBIDRef id)
Assigns the specified id to the labelMap according to its label
|
private void |
ByLabelClustering.assign(HashMap<String,DBIDs> labelMap,
String label,
DBIDRef id)
Assigns the specified id to the labelMap according to its label
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
FDBSCANNeighborPredicate.Instance.getIDs() |
DBIDs |
FDBSCANNeighborPredicate.Instance.getNeighbors(DBIDRef reference) |
Modifier and Type | Method and Description |
---|---|
DBIDIter |
FDBSCANNeighborPredicate.Instance.iterDBIDs(DBIDs neighbors) |
protected C |
CenterOfMassMetaClustering.runClusteringAlgorithm(ResultHierarchy hierarchy,
Result parent,
DBIDs ids,
DataStore<DoubleVector> store,
int dim,
String title)
Run a clustering algorithm on a single instance.
|
protected Clustering<?> |
RepresentativeUncertainClustering.runClusteringAlgorithm(ResultHierarchy hierarchy,
Result parent,
DBIDs ids,
DataStore<DoubleVector> store,
int dim,
String title)
Run a clustering algorithm on a single instance.
|
Modifier and Type | Method and Description |
---|---|
private DBIDs[] |
Eclat.buildIndex(Relation<BitVector> relation,
int dim,
int minsupp) |
private DBIDs |
Eclat.mergeJoin(DBIDs first,
DBIDs second) |
Modifier and Type | Method and Description |
---|---|
protected List<SparseItemset> |
APRIORI.buildFrequentTwoItemsets(List<OneItemset> oneitems,
Relation<BitVector> relation,
int dim,
int needed,
DBIDs ids,
ArrayModifiableDBIDs survivors)
Build the 2-itemsets.
|
private void |
Eclat.extractItemsets(DBIDs[] idx,
int start,
int minsupp,
List<Itemset> solution) |
private void |
Eclat.extractItemsets(DBIDs iset,
DBIDs[] idx,
int[] buf,
int depth,
int start,
int minsupp,
List<Itemset> solution) |
private void |
Eclat.extractItemsets(DBIDs iset,
DBIDs[] idx,
int[] buf,
int depth,
int start,
int minsupp,
List<Itemset> solution) |
protected List<? extends Itemset> |
APRIORI.frequentItemsets(List<? extends Itemset> candidates,
Relation<BitVector> relation,
int needed,
DBIDs ids,
ArrayModifiableDBIDs survivors,
int length)
Returns the frequent BitSets out of the given BitSets with respect to the
given database.
|
protected List<SparseItemset> |
APRIORI.frequentItemsetsSparse(List<SparseItemset> candidates,
Relation<BitVector> relation,
int needed,
DBIDs ids,
ArrayModifiableDBIDs survivors,
int length)
Returns the frequent BitSets out of the given BitSets with respect to the
given database.
|
private DBIDs |
Eclat.mergeJoin(DBIDs first,
DBIDs second) |
Modifier and Type | Method and Description |
---|---|
private void |
DWOF.clusterData(DBIDs ids,
RangeQuery<O> rnnQuery,
WritableDoubleDataStore radii,
WritableDataStore<ModifiableDBIDs> labels)
This method applies a density based clustering algorithm.
|
private void |
DWOF.initializeRadii(DBIDs ids,
KNNQuery<O> knnq,
DistanceQuery<O> distFunc,
WritableDoubleDataStore radii)
This method prepares a container for the radii of the objects and
initializes radii according to the equation:
initialRadii of a certain object = (absoluteMinDist of all objects) *
(avgDist of the object) / (minAvgDist of all objects)
|
private double |
GaussianUniformMixture.loglikelihoodAnomalous(DBIDs anomalousObjs)
Loglikelihood anomalous objects.
|
private double |
GaussianUniformMixture.loglikelihoodNormal(DBIDs objids,
Relation<V> database)
Computes the loglikelihood of all normal objects.
|
private int |
DWOF.updateSizes(DBIDs ids,
WritableDataStore<ModifiableDBIDs> labels,
WritableIntegerDataStore newSizes)
This method updates each object's cluster size after the clustering step.
|
Modifier and Type | Method and Description |
---|---|
protected DBIDs |
INFLO.getKNN(DBIDIter q,
KNNQuery<O> knnQuery,
WritableDataStore<ModifiableDBIDs> knns,
WritableDoubleDataStore density)
Get the (forward only) kNN of an object, including the query point
|
Modifier and Type | Method and Description |
---|---|
protected void |
COF.computeAverageChainingDistances(KNNQuery<O> knnq,
DistanceQuery<O> dq,
DBIDs ids,
WritableDoubleDataStore acds)
Computes the average chaining distance, the average length of a path
through the given set of points to each target.
|
private void |
COF.computeCOFScores(KNNQuery<O> knnq,
DBIDs ids,
DoubleDataStore acds,
WritableDoubleDataStore cofs,
DoubleMinMax cofminmax)
Compute Connectivity outlier factors.
|
protected void |
FlexibleLOF.computeLOFs(KNNQuery<O> knnq,
DBIDs ids,
DoubleDataStore lrds,
WritableDoubleDataStore lofs,
DoubleMinMax lofminmax)
Computes the Local outlier factor (LOF) of the specified objects.
|
private void |
LOF.computeLOFScores(KNNQuery<O> knnq,
DBIDs ids,
DoubleDataStore lrds,
WritableDoubleDataStore lofs,
DoubleMinMax lofminmax)
Compute local outlier factors.
|
protected void |
FlexibleLOF.computeLRDs(KNNQuery<O> knnq,
DBIDs ids,
WritableDoubleDataStore lrds)
Computes the local reachability density (LRD) of the specified objects.
|
private void |
LOF.computeLRDs(KNNQuery<O> knnq,
DBIDs ids,
WritableDoubleDataStore lrds)
Compute local reachability distances.
|
protected void |
KDEOS.computeOutlierScores(KNNQuery<O> knnq,
DBIDs ids,
WritableDataStore<double[]> densities,
WritableDoubleDataStore kdeos,
DoubleMinMax minmax)
Compute the final KDEOS scores.
|
private void |
SimplifiedLOF.computeSimplifiedLOFs(DBIDs ids,
KNNQuery<O> knnq,
WritableDoubleDataStore slrds,
WritableDoubleDataStore lofs,
DoubleMinMax lofminmax)
Compute the simplified LOF factors.
|
private void |
SimplifiedLOF.computeSimplifiedLRDs(DBIDs ids,
KNNQuery<O> knnq,
WritableDoubleDataStore lrds)
Compute the simplified reachability densities.
|
protected FlexibleLOF.LOFResult<O> |
FlexibleLOF.doRunInTime(DBIDs ids,
KNNQuery<O> kNNRefer,
KNNQuery<O> kNNReach,
StepProgress stepprog)
Performs the Generalized LOF_SCORE algorithm on the given database and
returns a
FlexibleLOF.LOFResult encapsulating information that may
be needed by an OnlineLOF algorithm. |
protected void |
KDEOS.estimateDensities(Relation<O> rel,
KNNQuery<O> knnq,
DBIDs ids,
WritableDataStore<double[]> densities)
Perform the kernel density estimation step.
|
private void |
OnlineLOF.LOFKNNListener.kNNsInserted(DBIDs insertions,
DBIDs updates1,
DBIDs updates2,
FlexibleLOF.LOFResult<O> lofResult)
Invoked after kNNs have been inserted and updated, updates the result.
|
private void |
OnlineLOF.LOFKNNListener.kNNsRemoved(DBIDs deletions,
DBIDs updates1,
DBIDs updates2,
FlexibleLOF.LOFResult<O> lofResult)
Invoked after kNNs have been removed and updated, updates the result.
|
private ArrayModifiableDBIDs |
OnlineLOF.LOFKNNListener.mergeIDs(List<? extends DoubleDBIDList> queryResults,
DBIDs... ids)
Merges the ids of the query result with the specified ids.
|
protected void |
LOCI.precomputeInterestingRadii(DBIDs ids,
RangeQuery<O> rangeQuery,
WritableDataStore<LOCI.DoubleIntArrayList> interestingDistances)
Preprocessing step: determine the radii of interest for each point.
|
private void |
OnlineLOF.LOFKNNListener.recomputeLOFs(DBIDs ids,
FlexibleLOF.LOFResult<O> lofResult)
Recomputes the lofs of the specified ids.
|
Modifier and Type | Field and Description |
---|---|
protected DataStore<DBIDs> |
AbstractPrecomputedNeighborhood.store
The data
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
NeighborSetPredicate.getNeighborDBIDs(DBIDRef reference)
Get the neighbors of a reference object for DBSCAN.
|
DBIDs |
AbstractPrecomputedNeighborhood.getNeighborDBIDs(DBIDRef reference) |
Modifier and Type | Method and Description |
---|---|
private DataStore<DBIDs> |
ExtendedNeighborhood.Factory.extendNeighborhood(Database database,
Relation<? extends O> relation)
Method to load the external neighbors.
|
private DataStore<DBIDs> |
ExternalNeighborhood.Factory.loadNeighbors(Database database,
Relation<?> relation)
Method to load the external neighbors.
|
Constructor and Description |
---|
AbstractPrecomputedNeighborhood(DataStore<DBIDs> store)
Constructor.
|
ExtendedNeighborhood(DataStore<DBIDs> store)
Constructor.
|
ExternalNeighborhood(DataStore<DBIDs> store)
Constructor.
|
PrecomputedKNearestNeighborNeighborhood(DataStore<DBIDs> store)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayList<ArrayList<DBIDs>> |
AggarwalYuEvolutionary.EvolutionarySearch.ranges
Database ranges.
|
Modifier and Type | Method and Description |
---|---|
protected DBIDs |
AbstractAggarwalYuOutlier.computeSubspace(ArrayList<IntIntPair> subspace,
ArrayList<ArrayList<DBIDs>> ranges)
Method to get the ids in the given subspace.
|
protected DBIDs |
AbstractAggarwalYuOutlier.computeSubspaceForGene(short[] gene,
ArrayList<ArrayList<DBIDs>> ranges)
Get the DBIDs in the current subspace.
|
private DBIDs |
SOD.getNearestNeighbors(Relation<V> relation,
SimilarityQuery<V> simQ,
DBIDRef queryObject)
Get the k nearest neighbors in terms of the shared nearest neighbor
distance.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayList<ArrayList<DBIDs>> |
AbstractAggarwalYuOutlier.buildRanges(Relation<V> relation)
Grid discretization of the data:
Each attribute of data is divided into phi equi-depth ranges. |
Modifier and Type | Method and Description |
---|---|
private static double[] |
SOD.computePerDimensionVariances(Relation<? extends NumberVector> relation,
Vector center,
DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.
|
Modifier and Type | Method and Description |
---|---|
protected DBIDs |
AbstractAggarwalYuOutlier.computeSubspace(ArrayList<IntIntPair> subspace,
ArrayList<ArrayList<DBIDs>> ranges)
Method to get the ids in the given subspace.
|
protected DBIDs |
AbstractAggarwalYuOutlier.computeSubspaceForGene(short[] gene,
ArrayList<ArrayList<DBIDs>> ranges)
Get the DBIDs in the current subspace.
|
Constructor and Description |
---|
EvolutionarySearch(Relation<V> relation,
ArrayList<ArrayList<DBIDs>> ranges,
int m,
Random random)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static Relation<NumberVector> |
GreedyEnsembleExperiment.applyPrescaling(ScalingFunction scaling,
Relation<NumberVector> relation,
DBIDs skip)
Prescale each vector (except when in
skip ) with the given scaling
function. |
(package private) void |
ComputeKNNOutlierScores.writeResult(PrintStream out,
DBIDs ids,
OutlierResult result,
ScalingFunction scaling,
String label)
Write a single output line.
|
Modifier and Type | Field and Description |
---|---|
private DBIDs |
Cluster.ids
Cluster data.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
Cluster.getIDs()
Access group object
|
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorUtil.computeMedoid(Relation<? extends NumberVector> relation,
DBIDs sample)
Compute medoid for a given subset.
|
void |
Cluster.setIDs(DBIDs g)
Access group object
|
Constructor and Description |
---|
Cluster(DBIDs ids)
Constructor without hierarchy information and name and model
|
Cluster(DBIDs ids,
boolean noise)
Constructor without hierarchy information and name and model
|
Cluster(DBIDs ids,
boolean noise,
M model)
Constructor without hierarchy information and name
|
Cluster(DBIDs ids,
M model)
Constructor without hierarchy information and name
|
Cluster(String name,
DBIDs ids)
Constructor without hierarchy information and model
|
Cluster(String name,
DBIDs ids,
boolean noise)
Constructor without hierarchy information and model
|
Cluster(String name,
DBIDs ids,
boolean noise,
M model)
Full constructor
|
Cluster(String name,
DBIDs ids,
M model)
Constructor without hierarchy information.
|
Modifier and Type | Field and Description |
---|---|
(package private) DBIDs |
CoreObjectsModel.core
Objects that are part of the cluster core.
|
private DBIDs |
BiclusterWithInversionsModel.invertedRows
The ids of inverted rows.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
CoreObjectsModel.getCoreObjects()
Get the core object IDs.
|
DBIDs |
BiclusterWithInversionsModel.getInvertedRows()
Provides a copy of the inverted column IDs.
|
Modifier and Type | Method and Description |
---|---|
static NumberVector |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends NumberVector> relation,
DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.
|
static <V extends NumberVector> |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends V> relation,
DBIDs ids,
NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid.
|
void |
BiclusterWithInversionsModel.setInvertedRows(DBIDs invertedRows)
Sets the ids of the inverted rows.
|
Constructor and Description |
---|
BiclusterWithInversionsModel(int[] colIDs,
DBIDs invertedRows) |
CoreObjectsModel(DBIDs core)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<DBIDs> |
TypeUtil.DBIDS
Database ID lists.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
HashmapDatabase.insert(ObjectBundle objpackages) |
DBIDs |
UpdatableDatabase.insert(ObjectBundle objpackages)
Inserts the given object(s) and their associations into the database.
|
Modifier and Type | Method and Description |
---|---|
MultipleObjectsBundle |
HashmapDatabase.delete(DBIDs ids)
Removes the objects from the database (by calling
HashmapDatabase.doDelete(DBIDRef) for each object) and indexes and fires a
deletion event. |
ObjectBundle |
UpdatableDatabase.delete(DBIDs ids)
Removes and returns the specified objects with the given ids from the
database.
|
private void |
DatabaseEventManager.fireObjectsChanged(DBIDs objects,
DatabaseEventManager.Type type)
Handles a DataStoreEvent with the specified type.
|
void |
DatabaseEventManager.fireObjectsInserted(DBIDs insertions)
Event when new objects are inserted.
|
protected void |
DatabaseEventManager.fireObjectsRemoved(DBIDs deletions)
Event when objects were removed / deleted.
|
void |
DatabaseEventManager.fireObjectsUpdated(DBIDs updates)
Event when objects have changed / were updated.
|
void |
ProxyDatabase.setDBIDs(DBIDs ids)
Set the DBIDs to use.
|
Constructor and Description |
---|
ProxyDatabase(DBIDs ids)
Constructor.
|
ProxyDatabase(DBIDs ids,
Database database)
Constructor, proxying all relations of an existing database.
|
ProxyDatabase(DBIDs ids,
Iterable<Relation<?>> relations)
Constructor.
|
ProxyDatabase(DBIDs ids,
Relation<?>... relations)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DBIDs |
DataStoreEvent.inserts
Insertions.
|
private DBIDs |
DataStoreEvent.removals
Removals.
|
private DBIDs |
DataStoreEvent.updates
Updates.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
DataStoreEvent.getInserts()
Get the inserted objects.
|
DBIDs |
DataStoreEvent.getRemovals()
Get the removed objects.
|
DBIDs |
DataStoreEvent.getUpdates()
Get the updates objects.
|
Modifier and Type | Method and Description |
---|---|
static DataStoreEvent |
DataStoreEvent.insertionEvent(DBIDs inserts)
Insertion event.
|
static WritableDBIDDataStore |
DataStoreUtil.makeDBIDStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableDBIDDataStore |
DataStoreFactory.makeDBIDStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static WritableDoubleDataStore |
DataStoreUtil.makeDoubleStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableDoubleDataStore |
DataStoreFactory.makeDoubleStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static WritableDoubleDataStore |
DataStoreUtil.makeDoubleStorage(DBIDs ids,
int hints,
double def)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableDoubleDataStore |
DataStoreFactory.makeDoubleStorage(DBIDs ids,
int hints,
double def)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static WritableIntegerDataStore |
DataStoreUtil.makeIntegerStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableIntegerDataStore |
DataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static WritableIntegerDataStore |
DataStoreUtil.makeIntegerStorage(DBIDs ids,
int hints,
int def)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableIntegerDataStore |
DataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints,
int def)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static WritableRecordStore |
DataStoreUtil.makeRecordStorage(DBIDs ids,
int hints,
Class<?>... dataclasses)
Make a new record storage, to associate the given ids with an object of
class dataclass.
|
WritableRecordStore |
DataStoreFactory.makeRecordStorage(DBIDs ids,
int hints,
Class<?>... dataclasses)
Make a new record storage, to associate the given ids with an object of
class dataclass.
|
static <T> WritableDataStore<T> |
DataStoreUtil.makeStorage(DBIDs ids,
int hints,
Class<? super T> dataclass)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
<T> WritableDataStore<T> |
DataStoreFactory.makeStorage(DBIDs ids,
int hints,
Class<? super T> dataclass)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static DataStoreEvent |
DataStoreEvent.removalEvent(DBIDs removals)
Removal event.
|
static DataStoreEvent |
DataStoreEvent.updateEvent(DBIDs updates)
Update event.
|
Constructor and Description |
---|
DataStoreEvent(DBIDs inserts,
DBIDs removals,
DBIDs updates)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
WritableDBIDDataStore |
MemoryDataStoreFactory.makeDBIDStorage(DBIDs ids,
int hints) |
WritableDoubleDataStore |
MemoryDataStoreFactory.makeDoubleStorage(DBIDs ids,
int hints) |
WritableDoubleDataStore |
MemoryDataStoreFactory.makeDoubleStorage(DBIDs ids,
int hints,
double def) |
WritableIntegerDataStore |
MemoryDataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints) |
WritableIntegerDataStore |
MemoryDataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints,
int def) |
WritableRecordStore |
MemoryDataStoreFactory.makeRecordStorage(DBIDs ids,
int hints,
Class<?>... dataclasses) |
<T> WritableDataStore<T> |
MemoryDataStoreFactory.makeStorage(DBIDs ids,
int hints,
Class<? super T> dataclass) |
Modifier and Type | Interface and Description |
---|---|
interface |
ArrayDBIDs
Interface for array based DBIDs.
|
interface |
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection.
|
interface |
ArrayStaticDBIDs
Unmodifiable, indexed DBIDs.
|
interface |
DBID
Database ID object.
|
interface |
DBIDPair
Immutable pair of two DBIDs.
|
interface |
DBIDRange
Static DBID range.
|
interface |
DBIDVar
(Persistent) variable storing a DBID reference.
|
interface |
DoubleDBIDList
Collection of double values associated with objects.
|
interface |
HashSetDBIDs
Hash-organized DBIDs
|
interface |
HashSetModifiableDBIDs
Set-oriented implementation of a modifiable DBID collection.
|
interface |
KNNList
Interface for kNN results.
|
interface |
ModifiableDBIDs
Interface for a generic modifiable DBID collection.
|
interface |
ModifiableDoubleDBIDList
Modifiable API for Distance-DBID results
|
interface |
SetDBIDs
Interface for DBIDs that support fast "set" operations, in particular
"contains" lookups.
|
interface |
StaticDBIDs
Unmodifiable DBIDs.
|
Modifier and Type | Class and Description |
---|---|
class |
EmptyDBIDs
Empty DBID collection.
|
Modifier and Type | Method and Description |
---|---|
static DBIDs |
DBIDUtil.randomSample(DBIDs ids,
double rate,
Random random)
Produce a random sample of the given DBIDs.
|
static DBIDs |
DBIDUtil.randomSample(DBIDs ids,
double rate,
RandomFactory random)
Produce a random sample of the given DBIDs.
|
Modifier and Type | Method and Description |
---|---|
boolean |
ModifiableDBIDs.addDBIDs(DBIDs ids)
Add DBIDs to collection.
|
static DBIDRange |
DBIDUtil.assertRange(DBIDs ids)
Assert that the presented ids constitute a continuous
DBIDRange . |
static ModifiableDBIDs |
DBIDUtil.difference(DBIDs ids1,
DBIDs ids2)
Returns the difference of the two specified collection of IDs.
|
static ArrayDBIDs |
DBIDUtil.ensureArray(DBIDs ids)
Ensure that the given DBIDs are array-indexable.
|
static ModifiableDBIDs |
DBIDUtil.ensureModifiable(DBIDs ids)
Ensure modifiable.
|
static SetDBIDs |
DBIDUtil.ensureSet(DBIDs ids)
Ensure that the given DBIDs support fast "contains" operations.
|
private static int |
DBIDUtil.internalIntersectionSize(DBIDs first,
DBIDs second)
Compute the set intersection size of two sets.
|
static ModifiableDBIDs |
DBIDUtil.intersection(DBIDs first,
DBIDs second)
Compute the set intersection of two sets.
|
static int |
DBIDUtil.intersectionSize(DBIDs first,
DBIDs second)
Compute the set intersection size of two sets.
|
static StaticDBIDs |
DBIDUtil.makeUnmodifiable(DBIDs existing)
Wrap an existing DBIDs collection to be unmodifiable.
|
ArrayModifiableDBIDs |
DBIDFactory.newArray(DBIDs existing)
Make a new (modifiable) array of DBIDs.
|
static ArrayModifiableDBIDs |
DBIDUtil.newArray(DBIDs existing)
Make a new (modifiable) array of DBIDs.
|
HashSetModifiableDBIDs |
DBIDFactory.newHashSet(DBIDs existing)
Make a new (modifiable) hash set of DBIDs.
|
static HashSetModifiableDBIDs |
DBIDUtil.newHashSet(DBIDs existing)
Make a new (modifiable) hash set of DBIDs.
|
static DBIDs |
DBIDUtil.randomSample(DBIDs ids,
double rate,
Random random)
Produce a random sample of the given DBIDs.
|
static DBIDs |
DBIDUtil.randomSample(DBIDs ids,
double rate,
RandomFactory random)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
int seed)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
Long seed)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
Random random)
Produce a random sample of the given DBIDs.
|
static ModifiableDBIDs |
DBIDUtil.randomSample(DBIDs source,
int k,
RandomFactory rnd)
Produce a random sample of the given DBIDs.
|
static DBIDVar |
DBIDUtil.randomSample(DBIDs ids,
Random random)
Draw a single random sample.
|
static DBIDVar |
DBIDUtil.randomSample(DBIDs ids,
RandomFactory random)
Draw a single random sample.
|
static ArrayDBIDs[] |
DBIDUtil.randomSplit(DBIDs oids,
int p,
Random random)
Randomly split IDs into
p partitions of almost-equal size. |
static ArrayDBIDs[] |
DBIDUtil.randomSplit(DBIDs ids,
int p,
RandomFactory rnd)
Randomly split IDs into
p partitions of almost-equal size. |
boolean |
ModifiableDBIDs.removeDBIDs(DBIDs ids)
Remove DBIDs from collection.
|
boolean |
HashSetModifiableDBIDs.retainAll(DBIDs set)
Retain all elements that also are in the second set.
|
static void |
DBIDUtil.symmetricIntersection(DBIDs first,
DBIDs second,
HashSetModifiableDBIDs firstonly,
HashSetModifiableDBIDs intersection,
HashSetModifiableDBIDs secondonly)
Compute the set symmetric intersection of two sets.
|
static String |
DBIDUtil.toString(DBIDs ids)
Format a DBID as string.
|
static ModifiableDBIDs |
DBIDUtil.union(DBIDs ids1,
DBIDs ids2)
Returns the union of the two specified collection of IDs.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNSubList
Sublist of an existing result to contain only the first k elements.
|
class |
MaskedDBIDs
View on an ArrayDBIDs masked using a BitMask for efficient mask changing.
|
class |
UnmodifiableArrayDBIDs
Unmodifiable wrapper for DBIDs.
|
class |
UnmodifiableDBIDs
Unmodifiable wrapper for DBIDs.
|
Modifier and Type | Field and Description |
---|---|
private DBIDs |
UnmodifiableDBIDs.inner
The DBIDs we wrap.
|
Constructor and Description |
---|
UnmodifiableDBIDs(DBIDs inner)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IntegerArrayDBIDs
Trivial combination interface.
|
(package private) interface |
IntegerArrayStaticDBIDs
Combination of
ArrayStaticDBIDs and IntegerDBIDs . |
interface |
IntegerDBIDKNNList
Combination interface for KNNList and IntegerDBIDs.
|
interface |
IntegerDBIDs
Integer DBID collection.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage.
|
private class |
ArrayModifiableIntegerDBIDs.Slice
Slice of an array.
|
(package private) class |
ArrayStaticIntegerDBIDs
Static (no modifications allowed) set of Database Object IDs.
|
private class |
ArrayStaticIntegerDBIDs.Slice
Slice of an array.
|
class |
DoubleIntegerDBIDKNNList
kNN list, but without automatic sorting.
|
(package private) class |
DoubleIntegerDBIDList
Class to store double distance, integer DBID results.
|
(package private) class |
DoubleIntegerDBIDListKNNHeap
Track the k nearest neighbors, with insertion sort to ensure the correct
order.
|
(package private) class |
DoubleIntegerDBIDPairKNNListHeap
KNN Heap implemented using a list of DoubleInt pair objects.
|
(package private) class |
DoubleIntegerDBIDPairList
Class to store double distance, integer DBID results.
|
(package private) class |
IntegerDBID
Database ID object.
|
class |
IntegerDBIDKNNSubList
Sublist of an existing result to contain only the first k elements.
|
(package private) class |
IntegerDBIDPair
DBID pair using two ints for storage.
|
(package private) class |
IntegerDBIDRange
Representing a DBID range allocation.
|
(package private) class |
IntegerDBIDVar
Variable for storing a single DBID reference.
|
(package private) class |
TroveHashSetModifiableDBIDs
Implementation using GNU Trove Int Hash Sets.
|
class |
UnmodifiableIntegerArrayDBIDs
Unmodifiable wrapper for DBIDs.
|
class |
UnmodifiableIntegerDBIDs
Unmodifiable wrapper for DBIDs.
|
Modifier and Type | Method and Description |
---|---|
boolean |
TroveHashSetModifiableDBIDs.addDBIDs(DBIDs ids) |
boolean |
ArrayModifiableIntegerDBIDs.addDBIDs(DBIDs ids) |
ArrayModifiableDBIDs |
AbstractIntegerDBIDFactory.newArray(DBIDs existing) |
HashSetModifiableDBIDs |
AbstractIntegerDBIDFactory.newHashSet(DBIDs existing) |
boolean |
TroveHashSetModifiableDBIDs.removeDBIDs(DBIDs ids) |
boolean |
ArrayModifiableIntegerDBIDs.removeDBIDs(DBIDs ids) |
boolean |
TroveHashSetModifiableDBIDs.retainAll(DBIDs set) |
Constructor and Description |
---|
ArrayModifiableIntegerDBIDs(DBIDs existing)
Constructor.
|
TroveHashSetModifiableDBIDs(DBIDs existing)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DBIDs |
DBIDView.ids
The ids object
|
private DBIDs |
ProxyView.idview
The DBIDs we contain
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
ProxyView.getDBIDs() |
DBIDs |
ConvertToStringView.getDBIDs() |
DBIDs |
Relation.getDBIDs()
Get the IDs the query is defined for.
|
DBIDs |
DBIDView.getDBIDs() |
DBIDs |
ProjectedView.getDBIDs() |
Modifier and Type | Method and Description |
---|---|
void |
ProxyView.setDBIDs(DBIDs ids)
Set the DBIDs to use.
|
void |
DBIDView.setDBIDs(DBIDs ids)
Set the DBIDs of the view.
|
static double[] |
RelationUtil.variances(Relation<? extends NumberVector> database,
NumberVector centroid,
DBIDs ids)
Determines the variances in each dimension of the specified objects stored
in the given database.
|
Constructor and Description |
---|
DBIDView(DBIDs ids)
Constructor.
|
MaterializedDoubleRelation(DBIDs ids)
Constructor.
|
MaterializedDoubleRelation(DBIDs ids,
String name)
Constructor.
|
MaterializedDoubleRelation(DBIDs ids,
String name,
DoubleDataStore content)
Constructor.
|
MaterializedDoubleRelation(String name,
String shortname,
DoubleDataStore content,
DBIDs ids)
Constructor.
|
MaterializedRelation(SimpleTypeInformation<O> type,
DBIDs ids)
Constructor.
|
MaterializedRelation(SimpleTypeInformation<O> type,
DBIDs ids,
String name)
Constructor.
|
MaterializedRelation(SimpleTypeInformation<O> type,
DBIDs ids,
String name,
DataStore<O> content)
Constructor.
|
MaterializedRelation(String name,
String shortname,
SimpleTypeInformation<O> type,
DataStore<O> content,
DBIDs ids)
Constructor.
|
ProxyView(DBIDs idview,
Relation<O> inner)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected static double |
SharedNearestNeighborJaccardDistanceFunction.Instance.jaccardCoefficient(DBIDs neighbors1,
DBIDs neighbors2)
Compute the Jaccard coefficient
|
Modifier and Type | Method and Description |
---|---|
protected static int |
FractionalSharedNearestNeighborSimilarityFunction.Instance.countSharedNeighbors(DBIDs neighbors1,
DBIDs neighbors2)
Compute the intersection size.
|
protected static int |
SharedNearestNeighborSimilarityFunction.countSharedNeighbors(DBIDs neighbors1,
DBIDs neighbors2)
Compute the intersection size
|
Modifier and Type | Method and Description |
---|---|
Matrix |
KernelMatrix.getSubColumn(DBIDRef i1,
DBIDs ids)
Deprecated.
|
Matrix |
KernelMatrix.getSubMatrix(DBIDs ids)
Returns a sub kernel matrix for all objects in ids
|
Constructor and Description |
---|
KernelMatrix(PrimitiveSimilarityFunction<? super O> kernelFunction,
Relation<? extends O> relation,
DBIDs ids)
Provides a new kernel matrix.
|
KernelMatrix(SimilarityQuery<? super O> kernelFunction,
Relation<? extends O> relation,
DBIDs ids)
Provides a new kernel matrix.
|
SortedArrayMap(DBIDs ids) |
Modifier and Type | Field and Description |
---|---|
protected DBIDs |
Segment.objIDs
IDs in segment, for object segments.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
Segment.getDBIDs()
Get the DBIDs of objects contained in this segment.
|
Modifier and Type | Method and Description |
---|---|
private void |
Segments.makeOrUpdateSegment(int[] path,
DBIDs ids,
int pairsize) |
Modifier and Type | Method and Description |
---|---|
private XYCurve |
OutlierPrecisionAtKCurve.computePrecisionResult(int size,
SetDBIDs positiveids,
DBIDs order) |
private OutlierROCCurve.ROCResult |
OutlierROCCurve.computeROCResult(int size,
SetDBIDs positiveids,
DBIDs order) |
protected JudgeOutlierScores.ScoreResult |
JudgeOutlierScores.computeScore(DBIDs ids,
DBIDs outlierIds,
OutlierResult or)
Evaluate a single outlier score result.
|
private EvaluationResult |
OutlierRankingEvaluation.evaluateOrderingResult(int size,
SetDBIDs positiveids,
DBIDs order) |
Modifier and Type | Method and Description |
---|---|
double |
ScoreEvaluation.evaluate(DBIDs ids,
DoubleDBIDList nei)
Evaluate given a list of positives and a scoring.
|
double |
AbstractScoreEvaluation.evaluate(DBIDs ids,
DoubleDBIDList nei) |
double |
ScoreEvaluation.evaluate(DBIDs ids,
OutlierResult outlier)
Evaluate given a set of positives and a scoring.
|
double |
AbstractScoreEvaluation.evaluate(DBIDs ids,
OutlierResult outlier) |
Modifier and Type | Field and Description |
---|---|
private DBIDs |
DBIDsTest.set
DBID set.
|
Constructor and Description |
---|
DBIDsTest(DBIDs set)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
DynamicIndex.deleteAll(DBIDs ids)
Deletes the specified objects from this index.
|
void |
DynamicIndex.insertAll(DBIDs ids)
Inserts the specified objects into this index.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayList<gnu.trove.map.TIntObjectMap<DBIDs>> |
InMemoryLSHIndex.Instance.hashtables
The actual table
|
Modifier and Type | Method and Description |
---|---|
DataStore<? extends DBIDs> |
RandomProjectedNeighborssAndDensities.getNeighs()
Compute list of neighbors for each point from sets resulting from
projection
|
Modifier and Type | Method and Description |
---|---|
void |
RandomProjectedNeighborssAndDensities.computeSetsBounds(Relation<V> points,
int minSplitSize,
DBIDs ptList)
Create random projections, project points and put points into sets of size
about minSplitSize/2
|
Modifier and Type | Field and Description |
---|---|
private DBIDs |
KNNChangeEvent.objects
The ids of the kNNs that were inserted or deleted due to the insertion or
removals of objects.
|
private DBIDs |
KNNChangeEvent.updates
The ids of the kNNs that were updated due to the insertion or removals of
objects.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
KNNChangeEvent.getObjects()
Returns the ids of the removed or inserted kNNs (according to the type of
this event).
|
DBIDs |
KNNChangeEvent.getUpdates()
Returns the ids of kNNs which have been changed due to the removals or
insertions.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedkNN(List<? extends KNNList> extract,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedRkNN(List<? extends Collection<DoubleDBIDPair>> extract,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
void |
MaterializeKNNPreprocessor.deleteAll(DBIDs ids) |
protected void |
MaterializeKNNPreprocessor.fireKNNsInserted(DBIDs insertions,
DBIDs updates)
Informs all registered KNNListener that new kNNs have been inserted and as
a result some kNNs have been changed.
|
protected void |
MaterializeKNNPreprocessor.fireKNNsRemoved(DBIDs removals,
DBIDs updates)
Informs all registered KNNListener that existing kNNs have been removed and
as a result some kNNs have been changed.
|
void |
MaterializeKNNPreprocessor.insertAll(DBIDs ids) |
protected void |
MaterializeKNNPreprocessor.objectsInserted(DBIDs ids)
Called after new objects have been inserted, updates the materialized
neighborhood.
|
protected void |
MaterializeKNNAndRKNNPreprocessor.objectsInserted(DBIDs ids) |
protected void |
MaterializeKNNPreprocessor.objectsRemoved(DBIDs ids)
Called after objects have been removed, updates the materialized
neighborhood.
|
protected void |
MaterializeKNNAndRKNNPreprocessor.objectsRemoved(DBIDs ids) |
private ArrayDBIDs |
MaterializeKNNPreprocessor.updateKNNsAfterDeletion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids.
|
private ArrayDBIDs |
MaterializeKNNPreprocessor.updateKNNsAfterInsertion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids.
|
private ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.updateKNNsAndRkNNs(DBIDs ids)
Updates the kNNs and RkNNs after insertion of the specified ids.
|
Constructor and Description |
---|
KNNChangeEvent(Object source,
KNNChangeEvent.Type type,
DBIDs objects,
DBIDs updates)
Used to create an event when kNNs of some objects have been changed.
|
Modifier and Type | Method and Description |
---|---|
private long[] |
HiSCPreferenceVectorIndex.determinePreferenceVector(Relation<V> relation,
DBIDRef id,
DBIDs neighborIDs,
StringBuilder msg)
Determines the preference vector according to the specified neighbor ids.
|
private int |
DiSHPreferenceVectorIndex.maxIntersection(Map<Integer,ModifiableDBIDs> candidates,
DBIDs set,
ModifiableDBIDs result)
Returns the index of the set having the maximum intersection set with the
specified set contained in the specified map.
|
Modifier and Type | Method and Description |
---|---|
void |
CoverTree.bulkLoad(DBIDs ids)
Bulk-load the index.
|
void |
SimplifiedCoverTree.bulkLoad(DBIDs ids)
Bulk-load the index.
|
Modifier and Type | Method and Description |
---|---|
protected Map<DBID,KNNList> |
AbstractMkTree.batchNN(N node,
DBIDs ids,
int kmax)
Deprecated.
Change to use by-object NN lookups instead.
|
Modifier and Type | Method and Description |
---|---|
private double[] |
MkAppTree.getMeanKNNList(DBIDs ids,
Map<DBID,KNNList> knnLists) |
Modifier and Type | Method and Description |
---|---|
void |
MkMaxTreeIndex.deleteAll(DBIDs ids)
Throws an UnsupportedOperationException since deletion of objects is not
yet supported by an M-Tree.
|
void |
MkMaxTreeIndex.insertAll(DBIDs ids) |
Modifier and Type | Method and Description |
---|---|
void |
MTreeIndex.deleteAll(DBIDs ids)
Throws an UnsupportedOperationException since deletion of objects is not
yet supported by an M-Tree.
|
void |
MTreeIndex.insertAll(DBIDs ids) |
Modifier and Type | Method and Description |
---|---|
void |
DeLiCluTreeIndex.deleteAll(DBIDs ids) |
void |
DeLiCluTreeIndex.insertAll(DBIDs ids)
Inserts the specified objects into this index.
|
Modifier and Type | Method and Description |
---|---|
void |
FlatRStarTreeIndex.deleteAll(DBIDs ids) |
void |
FlatRStarTreeIndex.insertAll(DBIDs ids)
Inserts the specified objects into this index.
|
Modifier and Type | Method and Description |
---|---|
protected List<RStarTreeKNNQuery.DoubleDistanceEntry> |
RStarTreeKNNQuery.getSortedEntries(AbstractRStarTreeNode<?,?> node,
DBIDs ids)
Sorts the entries of the specified node according to their minimum distance
to the specified objects.
|
Modifier and Type | Method and Description |
---|---|
List<ModifiableDoubleDBIDList> |
RdKNNTree.bulkReverseKNNQueryForID(DBIDs ids,
int k,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction,
KNNQuery<O> knnQuery) |
void |
RdKNNTree.deleteAll(DBIDs ids) |
private void |
RdKNNTree.doBulkReverseKNN(RdKNNNode node,
DBIDs ids,
Map<DBID,ModifiableDoubleDBIDList> result)
Performs a bulk reverse knn query in the specified subtree.
|
void |
RdKNNTree.insertAll(DBIDs ids)
Inserts the specified objects into this index.
|
Modifier and Type | Method and Description |
---|---|
void |
RStarTreeIndex.deleteAll(DBIDs ids) |
void |
RStarTreeIndex.insertAll(DBIDs ids)
Inserts the specified objects into this index.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayList<DBIDs>> |
MCEDimensionSimilarity.buildPartitions(Relation<? extends NumberVector> relation,
DBIDs ids,
int depth,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector> relation,
DBIDs ids,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
private ArrayList<ArrayList<DBIDs>> |
MCEDimensionSimilarity.buildPartitions(Relation<? extends NumberVector> relation,
DBIDs ids,
int depth,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list.
|
private double |
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector> relation,
DBIDs subset,
ArrayDBIDs subspaceIndex1,
ArrayDBIDs subspaceIndex2,
int dim1,
int dim2,
Random random)
Calculates the actual contrast of a given subspace
|
void |
SlopeInversionDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
SlopeDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
CovarianceDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
HiCSDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
HSMDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
SURFINGDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
MCEDimensionSimilarity.computeDimensionSimilarites(Relation<? extends NumberVector> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix) |
void |
DimensionSimilarity.computeDimensionSimilarites(Relation<? extends V> relation,
DBIDs subset,
DimensionSimilarityMatrix matrix)
Compute the dimension similarity matrix
|
Modifier and Type | Method and Description |
---|---|
private void |
MCEDimensionSimilarity.divide(DBIDArrayIter it,
double[] data,
ArrayList<DBIDs> idx,
int start,
int end,
int depth,
Mean mean)
Recursive call to further subdivide the array.
|
private void |
MCEDimensionSimilarity.intersectionMatrix(int[][] res,
ArrayList<? extends DBIDs> partsx,
ArrayList<? extends DBIDs> partsy,
int gridsize)
Intersect the two 1d grid decompositions, to obtain a 2d matrix.
|
private void |
MCEDimensionSimilarity.intersectionMatrix(int[][] res,
ArrayList<? extends DBIDs> partsx,
ArrayList<? extends DBIDs> partsy,
int gridsize)
Intersect the two 1d grid decompositions, to obtain a 2d matrix.
|
Modifier and Type | Method and Description |
---|---|
static ProjectedCentroid |
ProjectedCentroid.make(long[] dims,
Relation<? extends NumberVector> relation,
DBIDs ids)
Static Constructor from a relation.
|
static Centroid |
Centroid.make(Relation<? extends NumberVector> relation,
DBIDs ids)
Static constructor from an existing relation.
|
static CovarianceMatrix |
CovarianceMatrix.make(Relation<? extends NumberVector> relation,
DBIDs ids)
Static Constructor from a full relation.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.
|
PCAFilteredResult |
PCAFilteredAutotuningRunner.processIds(DBIDs ids,
Relation<? extends NumberVector> database) |
abstract Matrix |
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database) |
Matrix |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a collection of database IDs.
|
PCAResult |
PCARunner.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Run PCA on a collection of database IDs.
|
Matrix |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation)
Weighted Covariance Matrix for a set of IDs.
|
PCAFilteredResult |
PCAFilteredRunner.processIds(DBIDs ids,
Relation<? extends NumberVector> database)
Run PCA on a collection of database IDs.
|
Matrix |
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends NumberVector> relation) |
Constructor and Description |
---|
ZCurveTransformer(Relation<? extends NumberVector> relation,
DBIDs ids)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DBIDs |
SingleThreadedExecutor.SingleThreadedRunner.ids
Array IDs to process
|
Modifier and Type | Method and Description |
---|---|
static void |
ParallelExecutor.run(DBIDs ids,
Processor... procs)
Run a task on all available CPUs.
|
static void |
SingleThreadedExecutor.run(DBIDs ids,
Processor... procs)
Run a task on a single thread.
|
Constructor and Description |
---|
SingleThreadedRunner(DBIDs ids,
Processor[] procs)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DBIDs |
OrderingFromDataStore.ids
Database IDs
|
(package private) DBIDs |
SamplingResult.sample
The actual selection
|
private DBIDs |
DBIDSelection.selectedIds
Selected IDs
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
OrderingResult.getDBIDs()
Get the full set of DBIDs this ordering is defined for.
|
DBIDs |
OrderingFromDataStore.getDBIDs() |
DBIDs |
SamplingResult.getSample() |
DBIDs |
DBIDSelection.getSelectedIds()
Getter for the selected IDs
|
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
OrderingResult.order(DBIDs ids)
Sort the given ids according to this ordering and return an iterator.
|
ArrayModifiableDBIDs |
OrderingFromDataStore.order(DBIDs ids) |
void |
SamplingResult.setSample(DBIDs sample)
Note: trigger a resultchanged event!
|
Constructor and Description |
---|
DBIDSelection(DBIDs selectedIds)
Constructor with new object IDs.
|
OrderingFromDataStore(String name,
String shortname,
DBIDs ids,
DataStore<? extends T> map)
Minimal Constructor
|
OrderingFromDataStore(String name,
String shortname,
DBIDs ids,
DataStore<? extends T> map,
boolean descending)
Constructor without comparator
|
OrderingFromDataStore(String name,
String shortname,
DBIDs ids,
DataStore<? extends T> map,
Comparator<T> comparator,
boolean descending)
Constructor with comparator
|
RangeSelection(DBIDs selectedIds)
Constructor.
|
RangeSelection(DBIDs selection,
ModifiableHyperBoundingBox ranges)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DBIDs |
OrderingFromRelation.getDBIDs() |
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
OrderingFromRelation.order(DBIDs ids) |
Modifier and Type | Field and Description |
---|---|
(package private) ArrayList<DBIDs> |
ClusterStylingPolicy.ids
Object IDs
|
Modifier and Type | Method and Description |
---|---|
private void |
MoveObjectsToolVisualization.Instance.updateDB(DBIDs dbids,
Vector movingVector)
Updates the objects with the given DBIDs It will be moved depending on
the given Vector
|
Modifier and Type | Method and Description |
---|---|
protected ArrayModifiableDBIDs |
SameSizeKMeansAlgorithm.initialAssignment(List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
DBIDs ids) |
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.