Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality |
Quality measures for k-Means results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster |
Similarity measures for comparing clusters.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.scores |
Evaluation of rankings and scorings.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.result.textwriter.naming |
Naming schemes for clusters (for output when an algorithm doesn't generate cluster names).
|
de.lmu.ifi.dbs.elki.visualization.style |
Style management for ELKI visualizations.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
Visualizers that do work on OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection.
|
Modifier and Type | Method and Description |
---|---|
protected Cluster<BiclusterModel> |
AbstractBiclustering.defineBicluster(BitSet rows,
BitSet cols)
Defines a Bicluster as given by the included rows and columns.
|
protected Cluster<BiclusterModel> |
AbstractBiclustering.defineBicluster(long[] rows,
long[] cols)
Defines a Bicluster as given by the included rows and columns.
|
Modifier and Type | Method and Description |
---|---|
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
Relation<V> database,
int dimensionality,
ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
ERiC.isParent(ERiCNeighborPredicate.Instance npred,
Cluster<CorrelationModel<V>> parent,
Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private void |
ERiC.buildHierarchy(Clustering<CorrelationModel<V>> clustering,
List<List<Cluster<CorrelationModel<V>>>> clusterMap,
ERiCNeighborPredicate.Instance npred) |
private boolean |
ERiC.isParent(ERiCNeighborPredicate.Instance npred,
Cluster<CorrelationModel<V>> parent,
Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Field and Description |
---|---|
protected Collection<Cluster<DendrogramModel>> |
SimplifiedHierarchyExtraction.TempCluster.children
(Finished) child clusters
|
Modifier and Type | Method and Description |
---|---|
private Cluster<DendrogramModel> |
ExtractFlatClusteringFromHierarchy.makeCluster(DBIDRef lead,
double depth,
DBIDs members)
Make the cluster for the given object
|
private Cluster<DendrogramModel> |
SimplifiedHierarchyExtraction.makeSingletonCluster(DBIDRef lead,
double depth)
Make the cluster for the given object
|
private Cluster<DendrogramModel> |
SimplifiedHierarchyExtraction.TempCluster.toCluster(Clustering<DendrogramModel> clustering,
DBIDRef lead)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
void |
SimplifiedHierarchyExtraction.TempCluster.addChild(Cluster<DendrogramModel> clu)
Add a child cluster.
|
private void |
HDBSCANHierarchyExtraction.TempCluster.collectChildren(Clustering<DendrogramModel> clustering,
HDBSCANHierarchyExtraction.TempCluster cur,
Cluster<DendrogramModel> clus,
boolean flatten,
boolean hierarchical)
Recursive flattening of clusters.
|
private void |
HDBSCANHierarchyExtraction.TempCluster.finalizeCluster(Clustering<DendrogramModel> clustering,
Cluster<DendrogramModel> parent,
boolean flatten,
boolean hierarchical)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
protected List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
protected List<? extends NumberVector> |
XMeans.splitCentroid(Cluster<? extends MeanModel> parentCluster,
Relation<V> relation)
Split an existing centroid into two initial centers.
|
protected List<Cluster<M>> |
XMeans.splitCluster(Cluster<M> parentCluster,
Database database,
Relation<V> relation)
Conditionally splits the clusters based on the information criterion.
|
Modifier and Type | Method and Description |
---|---|
void |
PredefinedInitialMeans.setInitialClusters(List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means.
|
Modifier and Type | Method and Description |
---|---|
static <V extends NumberVector> |
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
NumberVectorDistanceFunction<? super V> distanceFunction,
Relation<V> relation)
Variance contribution of a single cluster.
|
Modifier and Type | Method and Description |
---|---|
private Cluster<SubspaceModel> |
DOC.makeCluster(Relation<V> relation,
DBIDs C,
long[] D)
Utility method to create a subspace cluster from a list of DBIDs and the
relevant attributes.
|
private Cluster<SubspaceModel> |
DOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel> |
DOC.runFastDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
Modifier and Type | Method and Description |
---|---|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
private List<Cluster<SubspaceModel>> |
DiSH.sortClusters(Relation<V> relation,
gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
descending order.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
DiSH.isParent(Relation<V> relation,
Cluster<SubspaceModel> parent,
Hierarchy.Iter<Cluster<SubspaceModel>> iter,
int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private Subspace |
SUBCLU.bestSubspace(List<Subspace> subspaces,
Subspace candidate,
TreeMap<Subspace,List<Cluster<Model>>> clusterMap)
Determines the
d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
private void |
DiSH.buildHierarchy(Relation<V> database,
Clustering<SubspaceModel> clustering,
List<Cluster<SubspaceModel>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
private boolean |
DiSH.isParent(Relation<V> relation,
Cluster<SubspaceModel> parent,
Hierarchy.Iter<Cluster<SubspaceModel>> iter,
int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Field and Description |
---|---|
static Comparator<Cluster<?>> |
Cluster.BY_NAME_SORTER
A partial comparator for Clusters, based on their name.
|
private ModifiableHierarchy<Cluster<M>> |
Clustering.hierarchy
Cluster hierarchy.
|
private List<Cluster<M>> |
Clustering.toplevelclusters
Keep a list of top level clusters.
|
Modifier and Type | Method and Description |
---|---|
List<Cluster<M>> |
Clustering.getAllClusters()
Collect all clusters (recursively) into a List.
|
Hierarchy<Cluster<M>> |
Clustering.getClusterHierarchy()
Get the cluster hierarchy.
|
List<Cluster<M>> |
Clustering.getToplevelClusters()
Return top level clusters
|
Hierarchy.Iter<Cluster<M>> |
Clustering.iterToplevelClusters()
Iterate over the top level clusters.
|
Modifier and Type | Method and Description |
---|---|
void |
Clustering.addChildCluster(Cluster<M> parent,
Cluster<M> child)
Add a cluster to the clustering.
|
void |
Clustering.addChildCluster(Cluster<M> parent,
Cluster<M> child)
Add a cluster to the clustering.
|
void |
Clustering.addToplevelCluster(Cluster<M> clus)
Add a cluster to the clustering.
|
Constructor and Description |
---|
Clustering(String name,
String shortname,
List<Cluster<M>> toplevelclusters)
Constructor with a list of top level clusters
|
Modifier and Type | Method and Description |
---|---|
<T extends Cluster<?>> |
ClusterIntersectionSimilarityFunction.instantiate(Relation<T> relation) |
<T extends Cluster<?>> |
ClusterJaccardSimilarityFunction.instantiate(Relation<T> relation) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<? super Cluster<?>> |
ClusterIntersectionSimilarityFunction.getInputTypeRestriction() |
SimpleTypeInformation<? super Cluster<?>> |
ClusterJaccardSimilarityFunction.getInputTypeRestriction() |
Modifier and Type | Method and Description |
---|---|
double |
ClusterIntersectionSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.distance(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterIntersectionSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
double |
ClusterJaccardSimilarityFunction.similarity(Cluster<?> o1,
Cluster<?> o2) |
Modifier and Type | Method and Description |
---|---|
static int |
EvaluateSimplifiedSilhouette.centroids(Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Compute centroids.
|
protected double[] |
EvaluateConcordantPairs.computeWithinDistances(Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
int withinPairs) |
static int |
EvaluateVarianceRatioCriteria.globalCentroid(Centroid overallCentroid,
Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
NumberVector[] centroids,
NoiseHandling noiseOption)
Update the global centroid.
|
double[] |
EvaluateDaviesBouldin.withinGroupDistances(Relation<? extends NumberVector> rel,
List<? extends Cluster<?>> clusters,
NumberVector[] centroids) |
Modifier and Type | Field and Description |
---|---|
private List<List<? extends Cluster<?>>> |
Segments.clusters
Clusters
|
Modifier and Type | Method and Description |
---|---|
private void |
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs) |
private void |
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs,
int depth,
SetDBIDs first,
SetDBIDs second,
int[] path,
boolean objectsegment) |
Modifier and Type | Method and Description |
---|---|
double |
ScoreEvaluation.evaluate(Cluster<?> clus,
DoubleDBIDList nei)
Evaluate given a cluster (of positive elements) and a scoring list.
|
double |
AbstractScoreEvaluation.evaluate(Cluster<?> clus,
DoubleDBIDList nei) |
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
private StringBuilder |
KMLOutputHandler.makeDescription(Cluster<?> c)
Make an HTML description.
|
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Field and Description |
---|---|
private Map<Cluster<?>,String> |
SimpleEnumeratingScheme.names
Assigned cluster names.
|
Modifier and Type | Method and Description |
---|---|
String |
SimpleEnumeratingScheme.getNameFor(Cluster<?> cluster)
Retrieve the cluster name.
|
String |
NamingScheme.getNameFor(Cluster<?> cluster)
Retrieve a name for the given cluster.
|
Modifier and Type | Field and Description |
---|---|
(package private) gnu.trove.map.TObjectIntMap<Cluster<?>> |
ClusterStylingPolicy.cmap
Map from cluster objects to color offsets.
|
Modifier and Type | Method and Description |
---|---|
int |
ClusterStylingPolicy.getStyleForCluster(Cluster<?> c)
Get the style number for a cluster.
|
Modifier and Type | Method and Description |
---|---|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size)
Recursive depth computation.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size)
Recursive depth computation.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.