public class EigenvalueDecomposition extends Object implements Serializable
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.timesTranspose(V)) and V.timesTranspose(V) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
Modifier and Type | Field and Description |
---|---|
private double |
cdivi |
private double |
cdivr |
private double[] |
d
Arrays for internal storage of eigenvalues.
|
private double[] |
e
Arrays for internal storage of eigenvalues.
|
private static double |
EPS
Epsilon.
|
private double[][] |
H
Array for internal storage of nonsymmetric Hessenberg form.
|
private boolean |
issymmetric
Symmetry flag.
|
private int |
n
Row and column dimension (square matrix).
|
private double[] |
ort
Working storage for nonsymmetric algorithm.
|
private static long |
serialVersionUID
Serial version
|
private double[][] |
V
Array for internal storage of eigenvectors.
|
Constructor and Description |
---|
EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition
|
Modifier and Type | Method and Description |
---|---|
private void |
cdiv(double xr,
double xi,
double yr,
double yi) |
Matrix |
getD()
Return the block diagonal eigenvalue matrix
|
double[] |
getImagEigenvalues()
Return the imaginary parts of the eigenvalues
|
double[] |
getRealEigenvalues()
Return the real parts of the eigenvalues
|
Matrix |
getV()
Return the eigenvector matrix
|
private void |
hqr2() |
private void |
orthes() |
private void |
tql2() |
private void |
tred2() |
private static final double EPS
private static final long serialVersionUID
private int n
private boolean issymmetric
private double[] d
private double[] e
private double[][] V
private double[][] H
private double[] ort
private transient double cdivr
private transient double cdivi
public EigenvalueDecomposition(Matrix Arg)
Arg
- Square matrixprivate void tred2()
private void tql2()
private void orthes()
private void cdiv(double xr, double xi, double yr, double yi)
private void hqr2()
public Matrix getV()
public double[] getRealEigenvalues()
public double[] getImagEigenvalues()
public Matrix getD()
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.