Modifier and Type | Class and Description |
---|---|
class |
AbstractNumberVectorDistanceFunction
Abstract base class for the most common family of distance functions: defined
on number vectors and returning double values.
|
class |
AbstractNumberVectorNorm
Abstract base class for double-valued number-vector-based distances based on
norms.
|
class |
AbstractSpatialDistanceFunction
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
AbstractSpatialNorm
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
ArcCosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
spaces.
|
class |
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance.
|
class |
ClarkDistanceFunction
Clark distance function for vector spaces.
|
class |
CosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form.
|
class |
LorentzianDistanceFunction
Lorentzian distance function for vector spaces.
|
class |
MatrixWeightedDistanceFunction
Weighted distance for feature vectors.
|
class |
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms.
|
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
color similarity.
|
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
color similarity.
|
Modifier and Type | Class and Description |
---|---|
class |
AbsolutePearsonCorrelationDistanceFunction
Absolute Pearson correlation distance function for feature vectors.
|
class |
AbsoluteUncenteredCorrelationDistanceFunction
Absolute uncentered correlation distance function for feature vectors.
|
class |
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
class |
SquaredUncenteredCorrelationDistanceFunction
Squared uncentered correlation distance function for feature vectors.
|
class |
UncenteredCorrelationDistanceFunction
Uncentered correlation distance.
|
class |
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e.
|
class |
KolmogorovSmirnovDistanceFunction
Distance function based on the Kolmogorov-Smirnov goodness of fit test.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanDistanceFunction
Euclidean distance for
NumberVector s. |
class |
LPIntegerNormDistanceFunction
LP-Norm for
NumberVector s, optimized version for integer values of p. |
class |
LPNormDistanceFunction
LP-Norm for
NumberVector s. |
class |
ManhattanDistanceFunction
Manhattan distance for
NumberVector s. |
class |
MaximumDistanceFunction
Maximum distance for
NumberVector s. |
class |
MinimumDistanceFunction
Maximum distance for
NumberVector s. |
class |
SparseEuclideanDistanceFunction
Euclidean distance function, optimized for
SparseNumberVector s. |
class |
SparseLPNormDistanceFunction
LP-Norm, optimized for
SparseNumberVector s. |
class |
SparseManhattanDistanceFunction
Manhattan distance, optimized for
SparseNumberVector s. |
class |
SparseMaximumDistanceFunction
Maximum distance, optimized for
SparseNumberVector s. |
class |
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for
SparseNumberVector s. |
class |
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for
NumberVector s. |
class |
WeightedLPNormDistanceFunction
Weighted version of the Minkowski L_p norm distance for
NumberVector . |
class |
WeightedManhattanDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
NumberVector s. |
class |
WeightedMaximumDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
NumberVector s. |
class |
WeightedSquaredEuclideanDistanceFunction
Squared Euclidean distance for
NumberVector s. |
Modifier and Type | Class and Description |
---|---|
class |
ChiSquaredDistanceFunction
Chi-Squared distance function, symmetric version.
|
class |
HellingerDistanceFunction
Hellinger kernel / Hellinger distance are used with SIFT vectors, and also
known as Bhattacharyya distance / coefficient.
|
class |
JeffreyDivergenceDistanceFunction
Jeffrey Divergence Distance for
NumberVector s. |
class |
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence is essentially the same as Jeffrey divergence, only
scaled by half.
|
class |
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is metric.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSetDistanceFunction<O>
Abstract base class for set distance functions.
|
class |
HammingDistanceFunction
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how
many places they differ.
|
class |
JaccardSimilarityDistanceFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
LevenshteinDistanceFunction
Classic Levenshtein distance on strings.
|
class |
NormalizedLevenshteinDistanceFunction
Levenshtein distance on strings, normalized by string length.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDimensionsSelectingDistanceFunction<V extends FeatureVector<?>>
Abstract base class for distances computed only in subspaces.
|
class |
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
absolute difference of their values in a specified dimension only.
|
class |
SubspaceEuclideanDistanceFunction
Euclidean distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceLPNormDistanceFunction
LP-Norm distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceManhattanDistanceFunction
Manhattan distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceMaximumDistanceFunction
Maximum distance function between
NumberVector s only in specified
dimensions. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractEditDistanceFunction
Edit Distance for FeatureVectors.
|
class |
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors.
|
class |
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors.
|
class |
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors.
|
class |
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors.
|
class |
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.