
O - Vector type@Reference(authors="P. Jaccard", title="Distribution de la florine alpine dans la Bassin de Dranses et dans quelques regiones voisines", booktitle="Bulletin del la Soci\u00e9t\u00e9 Vaudoise des Sciences Naturelles") public class JaccardSimilarityDistanceFunction<O extends FeatureVector<?>> extends AbstractSetDistanceFunction<O> implements NormalizedPrimitiveSimilarityFunction<O>, NumberVectorDistanceFunction<O>, PrimitiveDistanceFunction<O>
|intersection|/|union|.
 
 We can extend this definition as follows:
 
 |non-zero and equal attributes|/|non-zero attributes|.
 
 For binary vectors, this will obviously be the same quantity. However, this
 version is more useful for categorical data.
 
 Reference:
 
 P. Jaccard
 Distribution de la florine alpine dans la Bassin de Dranses et dans quelques
 regiones voisines
 Bulletin del la Société Vaudoise des Sciences Naturelles
 
DOUBLE_NULL, INTEGER_NULL, STRING_NULL| Constructor and Description | 
|---|
| JaccardSimilarityDistanceFunction()Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| double | distance(NumberVector o1,
        NumberVector o2)Computes the distance between two given vectors according to this distance
 function. | 
| double | distance(O o1,
        O o2)Computes the distance between two given DatabaseObjects according to this
 distance function. | 
| SimpleTypeInformation<? super O> | getInputTypeRestriction()Get the input data type of the function. | 
| <T extends O>  | instantiate(Relation<T> relation)Instantiate with a database to get the actual distance query. | 
| boolean | isMetric()Is this distance function metric (in particular, does it satisfy the
 triangle equation?) | 
| double | similarity(O o1,
          O o2)Computes the similarity between two given DatabaseObjects according to this
 similarity function. | 
| static double | similarityNumberVector(NumberVector o1,
                      NumberVector o2)Compute Jaccard similarity for two number vectors. | 
isNullisSymmetricclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitisSymmetricisSymmetricpublic JaccardSimilarityDistanceFunction()
public double similarity(O o1, O o2)
PrimitiveSimilarityFunctionsimilarity in interface PrimitiveSimilarityFunction<O extends FeatureVector<?>>o1 - first DatabaseObjecto2 - second DatabaseObjectpublic static double similarityNumberVector(NumberVector o1, NumberVector o2)
o1 - First vectoro2 - Second vectorpublic double distance(O o1, O o2)
PrimitiveDistanceFunctiondistance in interface PrimitiveDistanceFunction<O extends FeatureVector<?>>distance in class AbstractPrimitiveDistanceFunction<O extends FeatureVector<?>>o1 - first DatabaseObjecto2 - second DatabaseObjectpublic double distance(NumberVector o1, NumberVector o2)
NumberVectorDistanceFunctiondistance in interface NumberVectorDistanceFunction<O extends FeatureVector<?>>o1 - first DatabaseObjecto2 - second DatabaseObjectpublic boolean isMetric()
DistanceFunctionisMetric in interface DistanceFunction<O extends FeatureVector<?>>isMetric in class AbstractPrimitiveDistanceFunction<O extends FeatureVector<?>>true when metric.public SimpleTypeInformation<? super O> getInputTypeRestriction()
SimilarityFunctiongetInputTypeRestriction in interface DistanceFunction<O extends FeatureVector<?>>getInputTypeRestriction in interface PrimitiveDistanceFunction<O extends FeatureVector<?>>getInputTypeRestriction in interface PrimitiveSimilarityFunction<O extends FeatureVector<?>>getInputTypeRestriction in interface SimilarityFunction<O extends FeatureVector<?>>public <T extends O> DistanceSimilarityQuery<T> instantiate(Relation<T> relation)
AbstractPrimitiveDistanceFunctioninstantiate in interface DistanceFunction<O extends FeatureVector<?>>instantiate in interface SimilarityFunction<O extends FeatureVector<?>>instantiate in class AbstractPrimitiveDistanceFunction<O extends FeatureVector<?>>relation - RepresentationCopyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.