V
- Vector typeM
- Model type of inner algorithmpublic static class XMeans.Parameterizer<V extends NumberVector,M extends MeanModel> extends AbstractKMeans.Parameterizer<V>
Modifier and Type | Field and Description |
---|---|
static OptionID |
INFORMATION_CRITERION_ID
Quality measure to use for evaluating splits.
|
protected KMeansQualityMeasure<V> |
informationCriterion
Information criterion.
|
static OptionID |
INNER_KMEANS_ID
Parameter to specify the kMeans variant.
|
protected KMeans<V,M> |
innerKMeans
Variant of kMeans
|
protected int |
k_max
Minimum and maximum number of result clusters.
|
protected int |
k_min
Minimum and maximum number of result clusters.
|
static OptionID |
K_MIN_ID
Minimum number of clusters.
|
private RandomFactory |
random
Random number generator.
|
static OptionID |
SEED_ID
Randomization seed.
|
protected PredefinedInitialMeans |
splitInitializer
Class to feed splits to the internal k-means algorithm.
|
initializer, k, maxiter
distanceFunction
Constructor and Description |
---|
XMeans.Parameterizer() |
Modifier and Type | Method and Description |
---|---|
protected Logging |
getLogger()
Get class logger.
|
protected XMeans<V,M> |
makeInstance()
Make an instance after successful configuration.
|
protected void |
makeOptions(Parameterization config)
Add all options.
|
getParameterDistanceFunction, getParameterInitialization, getParameterK, getParameterMaxIter
configure, make
public static final OptionID INNER_KMEANS_ID
public static final OptionID K_MIN_ID
public static final OptionID SEED_ID
public static final OptionID INFORMATION_CRITERION_ID
protected KMeans<V extends NumberVector,M extends MeanModel> innerKMeans
protected PredefinedInitialMeans splitInitializer
protected KMeansQualityMeasure<V extends NumberVector> informationCriterion
protected int k_min
protected int k_max
private RandomFactory random
protected void makeOptions(Parameterization config)
AbstractParameterizer
makeOptions
in class AbstractKMeans.Parameterizer<V extends NumberVector>
config
- Parameterization to add options to.protected Logging getLogger()
AbstractKMeans.Parameterizer
getLogger
in class AbstractKMeans.Parameterizer<V extends NumberVector>
protected XMeans<V,M> makeInstance()
AbstractParameterizer
makeInstance
in class AbstractKMeans.Parameterizer<V extends NumberVector>
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.