
@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011", url="http://siam.omnibooksonline.com/2011datamining/data/papers/018.pdf") public class MinusLogGammaScaling extends OutlierGammaScaling
| Modifier and Type | Class and Description |
|---|---|
static class |
MinusLogGammaScaling.Parameterizer
Parameterization class.
|
| Modifier and Type | Field and Description |
|---|---|
(package private) double |
max
Maximum value seen
|
(package private) double |
mlogmax
Minimum value (after log step, so maximum again)
|
atmean, k, meta, normalize, NORMALIZE_ID, theta| Constructor and Description |
|---|
MinusLogGammaScaling()
Constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
called.
|
protected double |
preScale(double score)
Normalize data if necessary.
|
getMax, getMin, getScaled, preparedouble max
double mlogmax
protected double preScale(double score)
OutlierGammaScalingMinusLogGammaScaling!preScale in class OutlierGammaScalingscore - Original scorepublic void prepare(OutlierResult or)
OutlierScalingFunctionprepare in interface OutlierScalingFunctionprepare in class OutlierGammaScalingor - Outlier result to use