| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms | 
| de.lmu.ifi.dbs.elki.data | Basic classes for different data types, database object types and label types. | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization | Data normalization. | 
| de.lmu.ifi.dbs.elki.datasource.parser | Parsers for different file formats and data types. | 
| de.lmu.ifi.dbs.elki.math.statistics | Statistical tests and methods. | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator | Estimators for statistical distributions. | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta | Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble. | 
| de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike | Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays. | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | Scaling of Outlier scores, that require a statistical analysis of the occurring values | 
| Modifier and Type | Field and Description | 
|---|---|
| private static NumberArrayAdapter<Double,double[]> | COP. SHORTENED_ARRAYA clone of
  DoubleArrayAdapterthat only uses the first 85% of the array! | 
| Modifier and Type | Method and Description | 
|---|---|
| <A> ByteVector | ByteVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> SparseByteVector | SparseByteVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> SparseFloatVector | SparseFloatVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> FloatVector | FloatVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> DoubleVector | DoubleVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> OneDimensionalDoubleVector | OneDimensionalDoubleVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> SparseDoubleVector | SparseDoubleVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> SparseShortVector | SparseShortVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> SparseIntegerVector | SparseIntegerVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> IntegerVector | IntegerVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> V | NumberVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter)Instantiate from any number-array like object. | 
| <A> ShortVector | ShortVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| <A> BitVector | BitVector.Factory. newNumberVector(A array,
               NumberArrayAdapter<?,? super A> adapter) | 
| Modifier and Type | Class and Description | 
|---|---|
| private static class  | AttributeWiseCDFNormalization.AdapterArray adapter class for vectors. | 
| Modifier and Type | Method and Description | 
|---|---|
| protected <A> V | NumberVectorLabelParser. createDBObject(A attributes,
              NumberArrayAdapter<?,A> adapter)Creates a database object of type V. | 
| Modifier and Type | Method and Description | 
|---|---|
| static <A> double[] | ProbabilityWeightedMoments. alphaBetaPWM(A data,
            NumberArrayAdapter<?,A> adapter,
            int nmom)Compute the alpha_r and beta_r factors in parallel using the method of
 probability-weighted moments. | 
| static <A> double[] | ProbabilityWeightedMoments. alphaPWM(A data,
        NumberArrayAdapter<?,A> adapter,
        int nmom)Compute the alpha_r factors using the method of probability-weighted
 moments. | 
| static <A> double[] | ProbabilityWeightedMoments. betaPWM(A data,
       NumberArrayAdapter<?,A> adapter,
       int nmom)Compute the beta_r factors using the method of probability-weighted
 moments. | 
| static <A> double[] | ProbabilityWeightedMoments. samLMR(A sorted,
      NumberArrayAdapter<?,A> adapter,
      int nmom)Compute the sample L-Moments using probability weighted moments. | 
| Modifier and Type | Method and Description | 
|---|---|
| <A> D | AbstractMeanVarianceEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> RayleighDistribution | RayleighMLEEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | AbstractLogMADEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | AbstractExpMADEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> LogGammaDistribution | LogGammaChoiWetteEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> LaplaceDistribution | LaplaceMLEEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | AbstractLogMOMEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> UniformDistribution | UniformMinMaxEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> GammaDistribution | GammaChoiWetteEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> WeibullDistribution | WeibullLogMOMEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | AbstractMOMEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | AbstractMADEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | DistributionEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter)General form of the parameter estimation | 
| <A> D | AbstractLMMEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> NormalDistribution | NormalLevenbergMarquardtKDEEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> LogNormalDistribution | LogNormalLevenbergMarquardtKDEEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> UniformDistribution | UniformEnhancedMinMaxEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> WaldDistribution | WaldMLEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | AbstractLogMeanVarianceEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| static <A> double | AbstractLogMOMEstimator. min(A data,
   NumberArrayAdapter<?,A> adapter,
   double minmin,
   double margin)Utility function to find minimum and maximum values. | 
| Modifier and Type | Method and Description | 
|---|---|
| <A> D | TrimmedEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> Distribution | BestFitEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| <A> D | WinsorisingEstimator. estimate(A data,
        NumberArrayAdapter<?,A> adapter) | 
| Modifier and Type | Class and Description | 
|---|---|
| (package private) class  | DoubleArrayAdapterUse a double array as, well, double array in the ArrayAdapter API. | 
| (package private) class  | FlatMatrixAdapterUse a matrix as array, by flattening it into a sequence. | 
| (package private) class  | FloatArrayAdapterUse a double array as, well, double array in the ArrayAdapter API. | 
| class  | NumberListArrayAdapter<T extends Number>Static adapter class to use a  Listin an array of number
 API. | 
| class  | NumberVectorAdapter<N extends Number>Adapter to use a feature vector as an array of features. | 
| class  | SubsetNumberArrayAdapter<T extends Number,A>Subset array adapter (allows reordering and projection) | 
| class  | TDoubleListAdapterAdapter for using Trove TDoubleLists as array-like. | 
| class  | VectorAdapterAdapter to use a feature vector as an array of features. | 
| Modifier and Type | Field and Description | 
|---|---|
| static NumberArrayAdapter<Double,double[]> | ArrayLikeUtil. DOUBLEARRAYADAPTERUse a double array in the array API. | 
| static NumberArrayAdapter<Float,float[]> | ArrayLikeUtil. FLOATARRAYADAPTERUse a float array in the array API. | 
| static NumberArrayAdapter<Double,Vector> | ArrayLikeUtil. VECTORADAPTERAdapter for vectors. | 
| (package private) NumberArrayAdapter<T,? super A> | SubsetNumberArrayAdapter. wrappedWrapped adapter | 
| Modifier and Type | Method and Description | 
|---|---|
| static NumberArrayAdapter<Double,double[]> | ArrayLikeUtil. doubleArrayAdapter()Get the adapter for double arrays. | 
| static <T extends Number>  | ArrayLikeUtil. numberListAdapter(List<? extends T> dummy)Cast the static instance. | 
| Modifier and Type | Method and Description | 
|---|---|
| static <A> int | ArrayLikeUtil. getIndexOfMaximum(A array,
                 NumberArrayAdapter<?,A> adapter)Returns the index of the maximum of the given values. | 
| static <A> double[] | ArrayLikeUtil. toPrimitiveDoubleArray(A array,
                      NumberArrayAdapter<?,? super A> adapter)Convert a numeric array-like to a  double[]. | 
| static <A> float[] | ArrayLikeUtil. toPrimitiveFloatArray(A array,
                     NumberArrayAdapter<?,? super A> adapter)Convert a numeric array-like to a  float[]. | 
| static <A> int[] | ArrayLikeUtil. toPrimitiveIntegerArray(A array,
                       NumberArrayAdapter<?,? super A> adapter)Convert a numeric array-like to a  int[]. | 
| Constructor and Description | 
|---|
| SubsetNumberArrayAdapter(NumberArrayAdapter<T,? super A> wrapped,
                        int[] offs)Constructor. | 
| Modifier and Type | Method and Description | 
|---|---|
| private <A> double[] | SigmoidOutlierScalingFunction. MStepLevenbergMarquardt(double a,
                       double b,
                       BitSet t,
                       A array,
                       NumberArrayAdapter<?,A> adapter)M-Step using a modified Levenberg-Marquardt method. | 
| <A> void | SqrtStandardDeviationScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | OutlierGammaScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | OutlierSqrtScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | MultiplicativeInverseScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | MixtureModelOutlierScalingFunction. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | OutlierScalingFunction. prepare(A array,
       NumberArrayAdapter<?,A> adapter)Prepare is called once for each data set, before getScaled() will be
 called. | 
| <A> void | StandardDeviationScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | TopKOutlierScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | OutlierMinusLogScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | HeDESNormalizationOutlierScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | SigmoidOutlierScalingFunction. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | COPOutlierScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | OutlierLinearScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) | 
| <A> void | RankingPseudoOutlierScaling. prepare(A array,
       NumberArrayAdapter<?,A> adapter) |