Package | Description |
---|---|
de.lmu.ifi.dbs.elki.datasource.filter.normalization |
Data normalization.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator |
Estimators for statistical distributions.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta |
Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble.
|
Class and Description |
---|
DistributionEstimator
Estimate distribution parameters from a sample.
|
Class and Description |
---|
AbstractExpMADEstimator
Abstract base class for estimators based on the median and MAD.
|
AbstractLMMEstimator
Abstract base class for L-Moments based estimators (LMM).
|
AbstractLogMADEstimator
Abstract base class for estimators based on the median and MAD.
|
AbstractLogMeanVarianceEstimator
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
AbstractLogMOMEstimator
Abstract base class for estimators based on the statistical moments.
|
AbstractMADEstimator
Abstract base class for estimators based on the median and MAD.
|
AbstractMeanVarianceEstimator
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
AbstractMOMEstimator
Abstract base class for estimators based on the statistical moments.
|
CauchyMADEstimator
Estimate Cauchy distribution parameters using Median and MAD.
|
DistributionEstimator
Estimate distribution parameters from a sample.
|
EMGOlivierNorbergEstimator
Naive distribution estimation using mean and sample variance.
|
ExpMADDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in
exponentiated data.
|
ExponentialLMMEstimator
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
ExponentialMADEstimator
Estimate Exponential distribution parameters using Median and MAD.
|
ExponentialMedianEstimator
Estimate Exponential distribution parameters using Median and MAD.
|
ExponentialMOMEstimator
Estimate Exponential distribution parameters using the mean, which is the
maximum-likelihood estimate (MLE), but not very robust.
|
GammaChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
GammaLMMEstimator
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
GammaMADEstimator
Robust parameter estimation for the Gamma distribution.
|
GammaMOMEstimator
Simple parameter estimation for the Gamma distribution.
|
GeneralizedExtremeValueLMMEstimator
Estimate the parameters of a Generalized Extreme Value Distribution, using
the methods of L-Moments (LMM).
|
GeneralizedLogisticAlternateLMMEstimator
Estimate the parameters of a Generalized Logistic Distribution, using the
methods of L-Moments (LMM).
|
GumbelLMMEstimator
Estimate the parameters of a Gumbel Distribution, using the methods of
L-Moments (LMM).
|
GumbelMADEstimator
Parameter estimation via median and median absolute deviation from median
(MAD).
|
LaplaceLMMEstimator
Estimate Laplace distribution parameters using the method of L-Moments (LMM).
|
LaplaceMADEstimator
Estimate Laplace distribution parameters using Median and MAD.
|
LaplaceMLEEstimator
Estimate Laplace distribution parameters using Median and mean deviation from
median.
|
LMMDistributionEstimator
Interface for distribution estimators based on the methods of L-Moments
(LMM).
|
LogGammaAlternateExpMADEstimator
Robust parameter estimation for the LogGamma distribution.
|
LogGammaChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
LogGammaLogMADEstimator
Robust parameter estimation for the LogGamma distribution.
|
LogGammaLogMOMEstimator
Simple parameter estimation for the Gamma distribution.
|
LogisticLMMEstimator
Estimate the parameters of a Logistic Distribution, using the methods of
L-Moments (LMM).
|
LogisticMADEstimator
Estimate Logistic distribution parameters using Median and MAD.
|
LogLogisticMADEstimator
Estimate Logistic distribution parameters using Median and MAD.
|
LogMADDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace.
|
LogMOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace,
i.e. that only need the statistical moments of a data set after logarithms.
|
LogNormalBilkovaLMMEstimator
Alternate estimate the parameters of a log Gamma Distribution, using the
methods of L-Moments (LMM) for the Generalized Normal Distribution.
|
LogNormalLevenbergMarquardtKDEEstimator
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
LogNormalLMMEstimator
Estimate the parameters of a log Normal Distribution, using the methods of
L-Moments (LMM) for the Generalized Normal Distribution.
|
LogNormalLogMADEstimator
Estimator using Medians.
|
LogNormalLogMOMEstimator
Naive distribution estimation using mean and sample variance.
|
MADDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
MeanVarianceDistributionEstimator
Interface for estimators that only need mean and variance.
|
MOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
NormalLevenbergMarquardtKDEEstimator
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
NormalLMMEstimator
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
NormalMADEstimator
Estimator using Medians.
|
NormalMOMEstimator
Naive maximum-likelihood estimations for the normal distribution using mean
and sample variance.
|
RayleighLMMEstimator
Estimate the scale parameter of a (non-shifted) RayleighDistribution using
the method of L-Moments (LMM).
|
RayleighMADEstimator
Estimate the parameters of a RayleighDistribution using the MAD.
|
RayleighMLEEstimator
Estimate the scale parameter of a (non-shifted) RayleighDistribution using a
maximum likelihood estimate.
|
SkewGNormalLMMEstimator
Estimate the parameters of a skew Normal Distribution (Hoskin's Generalized
Normal Distribution), using the methods of L-Moments (LMM).
|
UniformEnhancedMinMaxEstimator
Slightly improved estimation, that takes sample size into account and
enhances the interval appropriately.
|
UniformLMMEstimator
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
UniformMADEstimator
Estimate Uniform distribution parameters using Median and MAD.
|
UniformMinMaxEstimator
Estimate the uniform distribution by computing min and max.
|
WaldMLEstimator
Estimate parameter of the Wald distribution.
|
WaldMOMEstimator
Estimate parameter of the Wald distribution.
|
WeibullLMMEstimator
Estimate parameters of the Weibull distribution using the method of L-Moments
(LMM).
|
WeibullLogMADEstimator
Parameter estimation via median and median absolute deviation from median
(MAD).
|
WeibullLogMOMEstimator
Naive parameter estimation via least squares.
|
Class and Description |
---|
DistributionEstimator
Estimate distribution parameters from a sample.
|
LMMDistributionEstimator
Interface for distribution estimators based on the methods of L-Moments
(LMM).
|
LogMADDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace.
|
LogMOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace,
i.e. that only need the statistical moments of a data set after logarithms.
|
MADDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
MOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|