Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
Index using a preprocessed local subspaces.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
Class and Description |
---|
PCAFilteredRunner
PCA runner that will do dimensionality reduction.
|
Class and Description |
---|
PCARunner
Class to run PCA on given data.
|
Class and Description |
---|
PCAFilteredRunner
PCA runner that will do dimensionality reduction.
|
PCARunner
Class to run PCA on given data.
|
Class and Description |
---|
PCAFilteredResult
Result class for a filtered PCA.
|
Class and Description |
---|
EigenPairFilter
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors
and their corresponding eigenvalues) which are a result of a
Variance Analysis Algorithm, e.g.
|
Class and Description |
---|
PCAFilteredResult
Result class for a filtered PCA.
|
Class and Description |
---|
PCAFilteredResult
Result class for a filtered PCA.
|
Class and Description |
---|
PCAFilteredResult
Result class for a filtered PCA.
|
PCAFilteredRunner
PCA runner that will do dimensionality reduction.
|
Class and Description |
---|
PCAFilteredResult
Result class for a filtered PCA.
|
PCAFilteredRunner
PCA runner that will do dimensionality reduction.
|
Class and Description |
---|
AbstractCovarianceMatrixBuilder
Abstract class with the task of computing a Covariance matrix to be used in PCA.
|
CompositeEigenPairFilter
The
CompositeEigenPairFilter can be used to build a chain of
eigenpair filters. |
CovarianceMatrixBuilder
Interface for computing covariance matrixes on a data set.
|
DropEigenPairFilter
The "drop" filter looks for the largest drop in normalized relative
eigenvalues.
|
EigenPairFilter
The eigenpair filter is used to filter eigenpairs (i.e. eigenvectors
and their corresponding eigenvalues) which are a result of a
Variance Analysis Algorithm, e.g.
|
FilteredEigenPairs
Encapsulates weak and strong eigenpairs that have been filtered out
by an eigenpair filter.
|
FirstNEigenPairFilter
The FirstNEigenPairFilter marks the n highest eigenpairs as strong
eigenpairs, where n is a user specified number.
|
LimitEigenPairFilter
The LimitEigenPairFilter marks all eigenpairs having an (absolute) eigenvalue
below the specified threshold (relative or absolute) as weak eigenpairs, the
others are marked as strong eigenpairs.
|
PCAFilteredAutotuningRunner
Performs a self-tuning local PCA based on the covariance matrices of given
objects.
|
PCAFilteredResult
Result class for a filtered PCA.
|
PCAFilteredRunner
PCA runner that will do dimensionality reduction.
|
PCAFilteredRunner.Parameterizer
Parameterization class.
|
PCAResult
Result class for Principal Component Analysis with some convenience methods
|
PCARunner
Class to run PCA on given data.
|
PCARunner.Parameterizer
Parameterization class.
|
PercentageEigenPairFilter
The PercentageEigenPairFilter sorts the eigenpairs in descending order of
their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
higher than the given percentage of the sum of all eigenvalues as strong
eigenpairs.
|
ProgressiveEigenPairFilter
The ProgressiveEigenPairFilter sorts the eigenpairs in descending order of
their eigenvalues and marks the first eigenpairs, whose sum of eigenvalues is
higher than the given percentage of the sum of all eigenvalues as strong
eigenpairs.
|
RANSACCovarianceMatrixBuilder
RANSAC based approach to a more robust covariance matrix computation.
|
RelativeEigenPairFilter
The RelativeEigenPairFilter sorts the eigenpairs in descending order of their
eigenvalues and marks the first eigenpairs who are a certain factor above the
average of the remaining eigenvalues.
|
SignificantEigenPairFilter
The SignificantEigenPairFilter sorts the eigenpairs in descending order of
their eigenvalues and chooses the contrast of an Eigenvalue to the remaining
Eigenvalues is maximal.
|
WeakEigenPairFilter
The WeakEigenPairFilter sorts the eigenpairs in descending order of their
eigenvalues and returns the first eigenpairs who are above the average mark
as "strong", the others as "weak".
|
WeightedCovarianceMatrixBuilder
CovarianceMatrixBuilder with weights. |