Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections |
Random projection families.
|
de.lmu.ifi.dbs.elki.math.statistics |
Statistical tests and methods.
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
Modifier and Type | Method and Description |
---|---|
static double |
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector<?>> relation,
double[] normDistrFactor,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
static void |
EM.computeInverseMatrixes(Matrix[] covarianceMatrices,
Matrix[] invCovMatr,
double[] normDistrFactor,
double norm)
Compute the inverse cluster matrices.
|
static void |
EM.computeInverseMatrixes(Matrix[] covarianceMatrices,
Matrix[] invCovMatr,
double[] normDistrFactor,
double norm)
Compute the inverse cluster matrices.
|
static void |
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector<?>> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] covarianceMatrices,
int dimensionality)
Recompute the covariance matrixes.
|
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
ORCLUS.ORCLUSCluster.basis
The matrix defining the subspace of this cluster.
|
(package private) Matrix |
LMCLUS.Separation.basis
Basis of manifold
|
Modifier and Type | Method and Description |
---|---|
private Matrix |
CASH.determineBasis(double[] alpha)
Determines a basis defining a subspace described by the specified alpha
values.
|
private Matrix |
ORCLUS.findBasis(Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
ORCLUS.ORCLUSCluster cluster,
int dim)
Finds the basis of the subspace of dimensionality
dim for the
specified cluster. |
private Matrix |
LMCLUS.generateOrthonormalBasis(List<Vector> vectors)
This Method generates an orthonormal basis from a set of Vectors.
|
private Matrix |
CASH.runDerivator(Relation<ParameterizationFunction> relation,
int dim,
CASHInterval interval,
ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
a distance less then the standard deviation of the derivator model to the
model to this model.
|
Modifier and Type | Method and Description |
---|---|
private MaterializedRelation<ParameterizationFunction> |
CASH.buildDB(int dim,
Matrix basis,
DBIDs ids,
Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
the specified subspace.
|
private double |
LMCLUS.deviation(Vector delta,
Matrix beta)
Deviation from a manifold described by beta.
|
private ParameterizationFunction |
CASH.project(Matrix basis,
ParameterizationFunction f)
Projects the specified parameterization function into the subspace
described by the given basis.
|
Modifier and Type | Method and Description |
---|---|
private void |
P3C.assignUnassigned(Relation<V> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
distance.
|
private void |
P3C.findOutliers(Relation<V> relation,
Vector[] means,
Matrix[] invCovMatr,
ArrayList<P3C.ClusterCandidate> clusterCandidates,
int nonUniformDimensionCount,
ModifiableDBIDs noise)
Performs outlier detection by testing the Mahalanobis distance of each
point in a cluster against the critical value of the ChiSquared
distribution with as many degrees of freedom as the cluster has relevant
attributes.
|
Modifier and Type | Method and Description |
---|---|
static double[] |
VectorUtil.fastTimes(Matrix mat,
NumberVector<?> v)
This is an ugly hack, but we don't want to have the
Matrix class
depend on NumberVector . |
Modifier and Type | Field and Description |
---|---|
private Matrix |
EMModel.covarianceMatrix
Cluster covariance matrix
|
private Matrix |
CorrelationAnalysisSolution.similarityMatrix
The similarity matrix of the pca.
|
private Matrix |
CorrelationAnalysisSolution.strongEigenvectors
The strong eigenvectors of the hyperplane induced by the correlation.
|
private Matrix |
CorrelationAnalysisSolution.weakEigenvectors
The weak eigenvectors of the hyperplane induced by the correlation.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
CorrelationAnalysisSolution.dataProjections(V p)
Returns the data vectors after projection.
|
Matrix |
EMModel.getCovarianceMatrix() |
Matrix |
CorrelationAnalysisSolution.getSimilarityMatrix()
Returns the similarity matrix of the pca.
|
Matrix |
CorrelationAnalysisSolution.getStrongEigenvectors()
Returns the strong eigenvectors.
|
Matrix |
CorrelationAnalysisSolution.getWeakEigenvectors()
Returns the weak eigenvectors.
|
Modifier and Type | Method and Description |
---|---|
void |
EMModel.setCovarianceMatrix(Matrix covarianceMatrix) |
Constructor and Description |
---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
number format.
|
EMModel(V mean,
Matrix covarianceMatrix)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Matrix> |
TypeUtil.MATRIX
Matrix type.
|
Modifier and Type | Method and Description |
---|---|
protected Matrix |
LinearDiscriminantAnalysisFilter.computeProjectionMatrix(List<V> vectorcolumn,
List<? extends ClassLabel> classcolumn,
int dim) |
protected abstract Matrix |
AbstractSupervisedProjectionVectorFilter.computeProjectionMatrix(List<V> vectorcolumn,
List<? extends ClassLabel> classcolumn,
int dim)
computes the projection matrix
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
WeightedDistanceFunction.weightMatrix
The weight matrix.
|
Constructor and Description |
---|
WeightedDistanceFunction(Matrix weightMatrix)
Provides the Weighted distance for feature vectors.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
RGBHistogramQuadraticDistanceFunction.computeWeightMatrix(int bpp)
Compute weight matrix for a RGB color histogram
|
static Matrix |
HSBHistogramQuadraticDistanceFunction.computeWeightMatrix(int quanth,
int quants,
int quantb)
Compute the weight matrix for HSB similarity.
|
Modifier and Type | Method and Description |
---|---|
private void |
PCABasedCorrelationDistanceFunction.Instance.adjust(Matrix v,
Matrix e_czech,
Vector vector,
int corrDim)
Inserts the specified vector into the given orthonormal matrix
v at column corrDim . |
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
KernelMatrix.kernel
The kernel matrix
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
KernelMatrix.centerKernelMatrix(KernelMatrix kernelMatrix)
Centers the Kernel Matrix in Feature Space according to Smola et.
|
static Matrix |
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et Schoelkopf,
Learning with Kernels p. 431 Alters the input matrix.
|
Matrix |
KernelMatrix.getKernel()
Get the kernel matrix.
|
Matrix |
KernelMatrix.getSubColumn(DBIDRef i1,
DBIDs ids)
Deprecated.
|
Matrix |
KernelMatrix.getSubMatrix(DBIDs ids)
Returns a sub kernel matrix for all objects in ids
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et Schoelkopf,
Learning with Kernels p. 431 Alters the input matrix.
|
Constructor and Description |
---|
KernelMatrix(Matrix matrix)
Makes a new kernel matrix from matrix (with data copying).
|
Modifier and Type | Method and Description |
---|---|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
DimensionSimilarityMatrix.copyToFullMatrix()
Transform linear triangle matrix into a full matrix.
|
Modifier and Type | Method and Description |
---|---|
static int[] |
PrimsMinimumSpanningTree.processDense(Matrix mat)
Process a k x k distance matrix.
|
Modifier and Type | Field and Description |
---|---|
private Matrix |
AffineTransformation.inv
the inverse transformation
|
private Matrix |
SubspaceProjectionResult.similarityMat
The similarity matrix
|
private Matrix |
AffineTransformation.trans
The transformation matrix of dim+1 x dim+1 for homogeneous coordinates
|
Modifier and Type | Method and Description |
---|---|
Matrix |
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns.
|
Matrix |
Matrix.cheatToAvoidSingularity(double constant)
Adds a given value to the diagonal entries if the entry is smaller than the
constant.
|
Matrix |
Matrix.clone()
Clone the Matrix object.
|
Matrix |
Matrix.completeBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
i.e. appends c-d columns to this basis.
|
Matrix |
Matrix.completeToOrthonormalBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
i.e. appends c-d columns to this basis.
|
static Matrix |
Matrix.constructWithCopy(double[][] A)
Construct a matrix from a copy of a 2-D array.
|
Matrix |
Matrix.copy()
Make a deep copy of a matrix.
|
Matrix |
CovarianceMatrix.destroyToNaiveMatrix()
Obtain the covariance matrix according to the population statistics: n
degrees of freedom.
|
Matrix |
CovarianceMatrix.destroyToSampleMatrix()
Obtain the covariance matrix according to the sample statistics: (n-1)
degrees of freedom.
|
static Matrix |
Matrix.diagonal(double[] diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
the diagonal.
|
static Matrix |
Matrix.diagonal(Vector diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
the diagonal.
|
Matrix |
SortedEigenPairs.eigenVectors()
Returns the sorted eigenvectors.
|
Matrix |
SortedEigenPairs.eigenVectors(int n)
Returns the first
n sorted eigenvectors as a matrix. |
Matrix |
Matrix.exactGaussJordanElimination()
Returns a matrix derived by Gauss-Jordan-elimination using RationalNumbers
for the transformations.
|
Matrix |
EigenvalueDecomposition.getD()
Return the block diagonal eigenvalue matrix
|
Matrix |
QRDecomposition.getH()
Return the Householder vectors
|
Matrix |
AffineTransformation.getInverse()
Get a copy of the inverse matrix
|
Matrix |
CholeskyDecomposition.getL()
Return triangular factor.
|
Matrix |
LUDecomposition.getL()
Return lower triangular factor
|
Matrix |
Matrix.getMatrix(int[] r,
int[] c)
Get a submatrix.
|
Matrix |
Matrix.getMatrix(int[] r,
int j0,
int j1)
Get a submatrix.
|
Matrix |
Matrix.getMatrix(int i0,
int i1,
int[] c)
Get a submatrix.
|
Matrix |
Matrix.getMatrix(int i0,
int i1,
int j0,
int j1)
Get a submatrix.
|
Matrix |
QRDecomposition.getQ()
Generate and return the (economy-sized) orthogonal factor
|
Matrix |
QRDecomposition.getR()
Return the upper triangular factor
|
Matrix |
SingularValueDecomposition.getS()
Return the diagonal matrix of singular values
|
Matrix |
AffineTransformation.getTransformation()
Get a copy of the transformation matrix
|
Matrix |
SingularValueDecomposition.getU()
Return the left singular vectors
|
Matrix |
LUDecomposition.getU()
Return upper triangular factor
|
Matrix |
SingularValueDecomposition.getV()
Return the right singular vectors
|
Matrix |
EigenvalueDecomposition.getV()
Return the eigenvector matrix
|
static Matrix |
Matrix.identity(int m,
int n)
Generate identity matrix
|
Matrix |
Matrix.increment(int i,
int j,
double s)
Increments a single element.
|
Matrix |
Matrix.inverse()
Matrix inverse or pseudoinverse
|
Matrix |
CovarianceMatrix.makeNaiveMatrix()
Obtain the covariance matrix according to the population statistics: n
degrees of freedom.
|
Matrix |
CovarianceMatrix.makeSampleMatrix()
Obtain the covariance matrix according to the sample statistics: (n-1)
degrees of freedom.
|
Matrix |
Matrix.minus(Matrix B)
C = A - B
|
Matrix |
Matrix.minusEquals(Matrix B)
A = A - B
|
Matrix |
Matrix.minusTimes(Matrix B,
double s)
C = A - s * B
|
Matrix |
Matrix.minusTimesEquals(Matrix B,
double s)
A = A - s * B
|
Matrix |
Matrix.orthonormalize()
Returns an orthonormalization of this matrix.
|
Matrix |
Matrix.plus(Matrix B)
C = A + B
|
Matrix |
Matrix.plusEquals(Matrix B)
A = A + B
|
Matrix |
Matrix.plusTimes(Matrix B,
double s)
C = A + s * B
|
Matrix |
Matrix.plusTimesEquals(Matrix B,
double s)
A = A + s * B
|
static Matrix |
Matrix.random(int m,
int n)
Generate matrix with random elements
|
static Matrix |
Matrix.read(BufferedReader input)
Read a matrix from a stream.
|
Matrix |
SortedEigenPairs.reverseEigenVectors(int n)
Returns the last
n sorted eigenvectors as a matrix. |
Matrix |
Matrix.set(int i,
int j,
double s)
Set a single element.
|
Matrix |
ProjectionResult.similarityMatrix()
Projection matrix
|
Matrix |
SubspaceProjectionResult.similarityMatrix() |
Matrix |
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Matrix.solve(Matrix B)
Solve A*X = B
|
Matrix |
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B
|
Matrix |
LUDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Matrix.times(double s)
Multiply a matrix by a scalar, C = s*A
|
Matrix |
Vector.times(Matrix B)
Linear algebraic matrix multiplication, A * B.
|
Matrix |
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
Matrix.timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A
|
Matrix |
Vector.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T.
|
Matrix |
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T
|
Matrix |
Vector.timesTranspose(Vector B)
Linear algebraic matrix multiplication, A * B^T.
|
Matrix |
Matrix.transpose()
Matrix transpose.
|
Matrix |
Vector.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B.
|
Matrix |
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B
|
Matrix |
Matrix.transposeTimesTranspose(Matrix B)
Linear algebraic matrix multiplication, A^T * B^T.
|
static Matrix |
Matrix.unitMatrix(int dim)
Returns the unit matrix of the specified dimension.
|
static Matrix |
Matrix.zeroMatrix(int dim)
Returns the zero matrix of the specified dimension.
|
Modifier and Type | Method and Description |
---|---|
void |
AffineTransformation.addMatrix(Matrix m)
Add a matrix operation to the matrix.
|
Matrix |
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns.
|
protected void |
Matrix.checkMatrixDimensions(Matrix B)
Check if size(A) == size(B)
|
boolean |
Matrix.linearlyIndependent(Matrix columnMatrix)
Returns true if the specified column matrix
a is linearly
independent to the columns of this matrix. |
static Centroid |
Centroid.make(Matrix mat)
Static Constructor from an existing matrix columns.
|
static CovarianceMatrix |
CovarianceMatrix.make(Matrix mat)
Static Constructor.
|
Matrix |
Matrix.minus(Matrix B)
C = A - B
|
Matrix |
Matrix.minusEquals(Matrix B)
A = A - B
|
Matrix |
Matrix.minusTimes(Matrix B,
double s)
C = A - s * B
|
Matrix |
Matrix.minusTimesEquals(Matrix B,
double s)
A = A - s * B
|
Matrix |
Matrix.plus(Matrix B)
C = A + B
|
Matrix |
Matrix.plusEquals(Matrix B)
A = A + B
|
Matrix |
Matrix.plusTimes(Matrix B,
double s)
C = A + s * B
|
Matrix |
Matrix.plusTimesEquals(Matrix B,
double s)
A = A + s * B
|
Vector |
Vector.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix
v.
|
void |
Matrix.setMatrix(int[] r,
int[] c,
Matrix X)
Set a submatrix.
|
void |
Matrix.setMatrix(int[] r,
int j0,
int j1,
Matrix X)
Set a submatrix.
|
void |
Matrix.setMatrix(int i0,
int i1,
int[] c,
Matrix X)
Set a submatrix.
|
void |
Matrix.setMatrix(int i0,
int i1,
int j0,
int j1,
Matrix X)
Set a submatrix.
|
Matrix |
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Matrix.solve(Matrix B)
Solve A*X = B
|
Matrix |
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B
|
Matrix |
LUDecomposition.solve(Matrix B)
Solve A*X = B
|
Matrix |
Vector.times(Matrix B)
Linear algebraic matrix multiplication, A * B.
|
Matrix |
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
Vector.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T.
|
Matrix |
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T
|
Matrix |
Vector.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B.
|
Matrix |
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B
|
double |
Vector.transposeTimesTimes(Matrix B,
Vector c)
Linear algebraic matrix multiplication, aT * B * c.
|
Matrix |
Matrix.transposeTimesTranspose(Matrix B)
Linear algebraic matrix multiplication, A^T * B^T.
|
Constructor and Description |
---|
AffineTransformation(int dim,
Matrix trans,
Matrix inv)
Trivial constructor with all fields, mostly for cloning
|
CholeskyDecomposition(Matrix Arg)
Cholesky algorithm for symmetric and positive definite matrix.
|
EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition
|
LUDecomposition(Matrix A)
LU Decomposition
|
Matrix(Matrix mat)
Constructor, cloning an existing matrix.
|
QRDecomposition(Matrix A)
QR Decomposition, computed by Householder reflections.
|
SingularValueDecomposition(Matrix Arg)
Construct the singular value decomposition
|
SubspaceProjectionResult(int correlationDimensionality,
Matrix similarityMat)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Matrix |
PCAFilteredResult.adapatedStrongEigenvectors
The diagonal matrix of adapted strong eigenvalues: eigenvectors * e_czech.
|
private Matrix |
PCAFilteredResult.e_czech
The selection matrix of the strong eigenvectors.
|
private Matrix |
PCAFilteredResult.e_hat
The selection matrix of the weak eigenvectors.
|
private Matrix |
PCAResult.eigenvectors
The eigenvectors in decreasing order to their corresponding eigenvalues.
|
(package private) Matrix |
PCAFilteredAutotuningRunner.Cand.m
Candidate matrix
|
private Matrix |
PCAFilteredResult.m_czech
The dissimilarity matrix.
|
private Matrix |
PCAFilteredResult.m_hat
The similarity matrix.
|
private Matrix |
PCAFilteredResult.strongEigenvectors
The strong eigenvectors to their corresponding filtered eigenvalues.
|
private Matrix |
PCAFilteredResult.weakEigenvectors
The weak eigenvectors to their corresponding filtered eigenvalues.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
PCAFilteredResult.adapatedStrongEigenvectors()
Returns the adapted strong eigenvectors.
|
Matrix |
PCAFilteredResult.dissimilarityMatrix()
Returns the dissimilarity matrix (M_czech) of this LocalPCA.
|
Matrix |
PCAResult.getEigenvectors()
Returns the matrix of eigenvectors of the object to which this PCA belongs
to.
|
Matrix |
PCAFilteredResult.getStrongEigenvectors()
Returns the matrix of strong eigenvectors after passing the eigen pair
filter.
|
Matrix |
PCAFilteredResult.getWeakEigenvectors()
Returns the matrix of weak eigenvectors after passing the eigen pair
filter.
|
Matrix |
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database.
|
Matrix |
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database) |
Matrix |
CovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database.
|
Matrix |
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs.
|
abstract Matrix |
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database) |
Matrix |
CovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs.
|
Matrix |
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> relation)
Weighted Covariance Matrix for a set of IDs.
|
Matrix |
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
Relation<? extends V> relation) |
<D extends NumberDistance<D,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database) |
<D extends NumberDistance<D,?>> |
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database,
int k) |
<D extends NumberDistance<D,?>> |
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
<D extends NumberDistance<D,?>> |
WeightedCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
Matrix |
PCAFilteredResult.selectionMatrixOfStrongEigenvectors()
Returns the selection matrix of the strong eigenvectors (E_czech)
of this LocalPCA.
|
Matrix |
PCAFilteredResult.selectionMatrixOfWeakEigenvectors()
Returns the selection matrix of the weak eigenvectors (E_hat) of
the object to which this PCA belongs to.
|
Matrix |
PCAFilteredResult.similarityMatrix()
Returns the similarity matrix (M_hat) of this LocalPCA.
|
Modifier and Type | Method and Description |
---|---|
PCAResult |
PCARunner.processCovarMatrix(Matrix covarMatrix)
Process an existing covariance Matrix.
|
PCAFilteredResult |
PCAFilteredRunner.processCovarMatrix(Matrix covarMatrix)
Process an existing Covariance Matrix.
|
Constructor and Description |
---|
PCAFilteredAutotuningRunner.Cand(Matrix m,
double explain,
int dim)
Constructor.
|
PCAResult(double[] eigenvalues,
Matrix eigenvectors,
SortedEigenPairs eigenPairs)
Build a PCA result object.
|
Modifier and Type | Field and Description |
---|---|
(package private) Matrix |
AbstractRandomProjectionFamily.MatrixProjection.matrix
Projection matrix.
|
Constructor and Description |
---|
AbstractRandomProjectionFamily.MatrixProjection(Matrix matrix)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Matrix |
MultipleLinearRegression.x
The (n x p+1)-matrix holding the x-values, where the i-th row has the form
(1 x1i ... x1p).
|
private Matrix |
MultipleLinearRegression.xx_inverse
Holds the matrix (x'x)^-1.
|
Modifier and Type | Method and Description |
---|---|
private static Matrix |
PolynomialRegression.xMatrix(Vector x,
int p) |
Modifier and Type | Method and Description |
---|---|
double |
MultipleLinearRegression.estimateY(Matrix x)
Perform an estimation of y on the specified matrix.
|
Constructor and Description |
---|
MultipleLinearRegression(Vector y,
Matrix x)
Provides a new multiple linear regression model with the specified
parameters.
|
Modifier and Type | Method and Description |
---|---|
static String |
FormatUtil.format(Matrix m)
returns String-representation of Matrix.
|
static String |
FormatUtil.format(Matrix m,
int w,
int d)
Returns a string representation of this matrix.
|
static String |
FormatUtil.format(Matrix m,
NumberFormat nf)
returns String-representation of Matrix.
|
static String |
FormatUtil.format(Matrix m,
String pre)
Returns a string representation of this matrix.
|
static String |
FormatUtil.format(Matrix m,
String pre,
NumberFormat nf)
Returns a string representation of this matrix.
|
Modifier and Type | Method and Description |
---|---|
Double |
FlatMatrixAdapter.get(Matrix array,
int off)
Deprecated.
|
byte |
FlatMatrixAdapter.getByte(Matrix array,
int off) |
double |
FlatMatrixAdapter.getDouble(Matrix array,
int off) |
float |
FlatMatrixAdapter.getFloat(Matrix array,
int off) |
int |
FlatMatrixAdapter.getInteger(Matrix array,
int off) |
long |
FlatMatrixAdapter.getLong(Matrix array,
int off) |
short |
FlatMatrixAdapter.getShort(Matrix array,
int off) |
int |
FlatMatrixAdapter.size(Matrix array) |