Package | Description |
---|---|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections.
|
Modifier and Type | Field and Description |
---|---|
private AbstractMaterializeKNNPreprocessor<O,D,T> |
PreprocessorKNNQuery.preprocessor
The last preprocessor result
|
Modifier and Type | Method and Description |
---|---|
AbstractMaterializeKNNPreprocessor<O,D,T> |
PreprocessorKNNQuery.getPreprocessor()
Get the preprocessor instance.
|
Constructor and Description |
---|
PreprocessorKNNQuery(Relation<O> database,
AbstractMaterializeKNNPreprocessor<O,D,T> preprocessor)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
CachedDoubleDistanceKNNPreprocessor<O>
Preprocessor that loads an existing cached kNN result.
|
class |
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector<?>,D extends Distance<D>>
Class to materialize the kNN using a spatial join on an R-tree.
|
class |
MaterializeKNNAndRKNNPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors and the reverse k
nearest neighbors (and their distances) to each database object.
|
class |
MaterializeKNNPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
class |
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
class |
PartitionApproximationMaterializeKNNPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
class |
RandomSampleKNNPreprocessor<O,D extends Distance<D>>
Class that computed the kNN only on a random sample.
|
class |
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
distances) to each database object.
|
Modifier and Type | Method and Description |
---|---|
abstract AbstractMaterializeKNNPreprocessor<O,D,T> |
AbstractMaterializeKNNPreprocessor.Factory.instantiate(Relation<O> relation) |
Modifier and Type | Field and Description |
---|---|
private AbstractMaterializeKNNPreprocessor<? extends NumberVector<?>,D,?> |
DistanceFunctionVisualization.Instance.result
The selection result we work on
|
Modifier and Type | Method and Description |
---|---|
static double |
DistanceFunctionVisualization.getLPNormP(AbstractMaterializeKNNPreprocessor<?,?,?> kNN)
Get the "p" value of an Lp norm.
|
static boolean |
DistanceFunctionVisualization.isAngularDistance(AbstractMaterializeKNNPreprocessor<?,?,?> kNN)
Test whether the given preprocessor used an angular distance function
|