Modifier and Type | Method and Description |
---|---|
private void |
DWOF.initializeRadii(DBIDs ids,
KNNQuery<O,D> knnq,
DistanceQuery<O,D> distFunc,
WritableDoubleDataStore radii)
This method prepares a container for the radii of the objects and
initializes radii according to the equation:
initialRadii of a certain object = (absoluteMinDist of all objects) *
(avgDist of the object) / (minAvgDist of all objects)
|
Modifier and Type | Field and Description |
---|---|
private KNNQuery<O,D> |
FlexibleLOF.LOFResult.kNNReach
The kNN query w.r.t. the reachability distance.
|
private KNNQuery<O,D> |
FlexibleLOF.LOFResult.kNNRefer
The kNN query w.r.t. the reference neighborhood distance.
|
Modifier and Type | Method and Description |
---|---|
KNNQuery<O,D> |
FlexibleLOF.LOFResult.getKNNReach()
Get the knn query for the reachability set.
|
KNNQuery<O,D> |
FlexibleLOF.LOFResult.getKNNRefer()
Get the knn query for the reference set.
|
Modifier and Type | Method and Description |
---|---|
private Pair<Pair<KNNQuery<O,D>,KNNQuery<O,D>>,Pair<RKNNQuery<O,D>,RKNNQuery<O,D>>> |
OnlineLOF.getKNNAndRkNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
private Pair<Pair<KNNQuery<O,D>,KNNQuery<O,D>>,Pair<RKNNQuery<O,D>,RKNNQuery<O,D>>> |
OnlineLOF.getKNNAndRkNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN and rkNN queries for the algorithm.
|
private Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
FlexibleLOF.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
private Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
FlexibleLOF.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
protected Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
protected Pair<KNNQuery<O,D>,KNNQuery<O,D>> |
LoOP.getKNNQueries(Database database,
Relation<O> relation,
StepProgress stepprog)
Get the kNN queries for the algorithm.
|
Modifier and Type | Method and Description |
---|---|
protected Pair<WritableDoubleDataStore,DoubleMinMax> |
FlexibleLOF.computeLOFs(DBIDs ids,
DoubleDataStore lrds,
KNNQuery<O,D> knnRefer)
Computes the Local outlier factor (LOF) of the specified objects.
|
private void |
LOF.computeLOFScores(KNNQuery<O,D> knnq,
DBIDs ids,
DoubleDataStore lrds,
WritableDoubleDataStore lofs,
DoubleMinMax lofminmax)
Compute local outlier factors.
|
protected WritableDoubleDataStore |
FlexibleLOF.computeLRDs(DBIDs ids,
KNNQuery<O,D> knnReach)
Computes the local reachability density (LRD) of the specified objects.
|
private void |
LOF.computeLRDs(KNNQuery<O,D> knnq,
DBIDs ids,
WritableDoubleDataStore lrds)
Compute local reachability distances.
|
protected FlexibleLOF.LOFResult<O,D> |
FlexibleLOF.doRunInTime(DBIDs ids,
KNNQuery<O,D> kNNRefer,
KNNQuery<O,D> kNNReach,
StepProgress stepprog)
Performs the Generalized LOF_SCORE algorithm on the given database and
returns a
FlexibleLOF.LOFResult encapsulating information that may
be needed by an OnlineLOF algorithm. |
protected FlexibleLOF.LOFResult<O,D> |
FlexibleLOF.doRunInTime(DBIDs ids,
KNNQuery<O,D> kNNRefer,
KNNQuery<O,D> kNNReach,
StepProgress stepprog)
Performs the Generalized LOF_SCORE algorithm on the given database and
returns a
FlexibleLOF.LOFResult encapsulating information that may
be needed by an OnlineLOF algorithm. |
Constructor and Description |
---|
FlexibleLOF.LOFResult(OutlierResult result,
KNNQuery<O,D> kNNRefer,
KNNQuery<O,D> kNNReach,
WritableDoubleDataStore lrds,
WritableDoubleDataStore lofs)
Encapsulates information generated during a run of the
FlexibleLOF algorithm. |
FlexibleLOF.LOFResult(OutlierResult result,
KNNQuery<O,D> kNNRefer,
KNNQuery<O,D> kNNReach,
WritableDoubleDataStore lrds,
WritableDoubleDataStore lofs)
Encapsulates information generated during a run of the
FlexibleLOF algorithm. |
Modifier and Type | Method and Description |
---|---|
static <O,D extends Distance<D>> |
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
<O,D extends Distance<D>> |
Database.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a KNN query object for the given distance query.
|
<O,D extends Distance<D>> |
AbstractDatabase.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
static <O,D extends Distance<D>> |
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O,D> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O,D extends Distance<D>> |
QueryUtil.getLinearScanKNNQuery(DistanceQuery<O,D> distanceQuery)
Get a linear scan query for the given distance query.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDistanceKNNQuery<O,D extends Distance<D>>
Instance for the query on a particular database.
|
class |
DoubleOptimizedDistanceKNNQuery<O>
Optimized linear scan query for
PrimitiveDoubleDistanceFunction s. |
class |
LinearScanDistanceKNNQuery<O,D extends Distance<D>>
Instance of this query for a particular database.
|
class |
LinearScanPrimitiveDistanceKNNQuery<O,D extends Distance<D>>
Instance of this query for a particular database.
|
class |
PreprocessorKNNQuery<O,D extends Distance<D>,T extends KNNList<D>>
Instance for a particular database, invoking the preprocessor.
|
Modifier and Type | Field and Description |
---|---|
protected KNNQuery<O,D> |
LinearScanRKNNQuery.knnQuery
KNN query we use.
|
Constructor and Description |
---|
LinearScanRKNNQuery(DistanceQuery<O,D> distanceQuery,
KNNQuery<O,D> knnQuery,
Integer maxk)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private KNNQuery<T,D> |
MinKDistance.Instance.knnQuery
KNN query instance
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractRefiningIndex.AbstractKNNQuery<D extends Distance<D>>
KNN query for this index.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
KNNIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints)
Get a KNN query object for the given distance query and k.
|
Modifier and Type | Class and Description |
---|---|
protected class |
InMemoryLSHIndex.Instance.LSHKNNQuery<D extends Distance<D>>
Class for handling kNN queries against the LSH index.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
InMemoryLSHIndex.Instance.getKNNQuery(DistanceQuery<V,D> distanceQuery,
Object... hints) |
Modifier and Type | Field and Description |
---|---|
protected KNNQuery<O,D> |
MaterializeKNNPreprocessor.knnQuery
KNNQuery instance to use.
|
Modifier and Type | Method and Description |
---|---|
<S extends Distance<S>> |
AbstractMaterializeKNNPreprocessor.getKNNQuery(DistanceQuery<O,S> distQ,
Object... hints) |
Modifier and Type | Field and Description |
---|---|
private KNNQuery<NV,DoubleDistance> |
KNNQueryFilteredPCAIndex.knnQuery
The kNN query instance we use.
|
Constructor and Description |
---|
KNNQueryFilteredPCAIndex(Relation<NV> relation,
PCAFilteredRunner<NV> pca,
KNNQuery<NV,DoubleDistance> knnQuery,
int k)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
ProjectedIndex.ProjectedKNNQuery<D extends Distance<D>>
Class to proxy kNN queries.
|
Modifier and Type | Field and Description |
---|---|
(package private) KNNQuery<I,D> |
ProjectedIndex.ProjectedKNNQuery.inner
Inner kNN query.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
LatLngAsECEFIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
<D extends Distance<D>> |
ProjectedIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
<D extends Distance<D>> |
LngLatAsECEFIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
Constructor and Description |
---|
ProjectedIndex.ProjectedKNNQuery(DistanceQuery<O,D> distanceQuery,
KNNQuery<I,D> inner)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected KNNQuery<O,D> |
AbstractMkTree.knnq
Internal class for performing knn queries
|
Modifier and Type | Method and Description |
---|---|
<S extends Distance<S>> |
MkAppTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
<S extends Distance<S>> |
MkCoPTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
<S extends Distance<S>> |
MkMaxTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
<S extends Distance<S>> |
MkTabTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
<S extends Distance<S>> |
MTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
Object... hints) |
Modifier and Type | Class and Description |
---|---|
class |
DoubleDistanceMetricalIndexKNNQuery<O>
Instance of a KNN query for a particular spatial index.
|
class |
MetricalIndexKNNQuery<O,D extends NumberDistance<D,?>>
Instance of a KNN query for a particular spatial index.
|
Modifier and Type | Method and Description |
---|---|
static <O,D extends NumberDistance<D,?>> |
MTreeQueryUtil.getKNNQuery(AbstractMTree<O,D,?,?,?> tree,
DistanceQuery<O,D> distanceQuery,
Object... hints)
Get an RTree knn query, using an optimized double implementation when
possible.
|
Modifier and Type | Class and Description |
---|---|
class |
MinimalisticMemoryKDTree.KDTreeKNNQuery
kNN query for the k-d-tree.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
MinimalisticMemoryKDTree.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
DeLiCluTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
Modifier and Type | Class and Description |
---|---|
class |
DoubleDistanceRStarTreeKNNQuery<O extends SpatialComparable>
Instance of a KNN query for a particular spatial index.
|
class |
GenericRStarTreeKNNQuery<O extends SpatialComparable,D extends Distance<D>>
Instance of a KNN query for a particular spatial index.
|
Modifier and Type | Method and Description |
---|---|
static <O extends SpatialComparable,D extends Distance<D>> |
RStarTreeUtil.getKNNQuery(AbstractRStarTree<?,?,?> tree,
SpatialDistanceQuery<O,D> distanceQuery,
Object... hints)
Get an RTree knn query, using an optimized double implementation when
possible.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
RStarTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
Object... hints) |
Modifier and Type | Class and Description |
---|---|
class |
PartialVAFile.PartialVAFileKNNQuery
KNN query for this index.
|
class |
VAFile.VAFileKNNQuery
KNN query for this index.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
PartialVAFile.getKNNQuery(DistanceQuery<V,D> distanceQuery,
Object... hints) |
<D extends Distance<D>> |
VAFile.getKNNQuery(DistanceQuery<V,D> distanceQuery,
Object... hints) |