Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.distance |
Distance-DBID pairs, lists and heaps.
|
de.lmu.ifi.dbs.elki.database.ids.generic |
Database object identification and ID group handling - generic implementations.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
Modifier and Type | Method and Description |
---|---|
private List<KNNHeap<D>> |
KNNJoin.initHeaps(SpatialPrimitiveDistanceFunction<V,D> distFunction,
N pr)
Initialize the heaps.
|
Modifier and Type | Method and Description |
---|---|
private D |
KNNJoin.computeStopDistance(List<KNNHeap<D>> heaps)
Compute the maximum stop distance.
|
private void |
KNNJoin.processDataPagesOptimize(SpatialPrimitiveDistanceFunction<V,D> distFunction,
List<? extends KNNHeap<D>> pr_heaps,
List<? extends KNNHeap<D>> ps_heaps,
N pr,
N ps)
Processes the two data pages pr and ps and determines the k-nearest
neighbors of pr in ps.
|
private void |
KNNJoin.processDataPagesOptimize(SpatialPrimitiveDistanceFunction<V,D> distFunction,
List<? extends KNNHeap<D>> pr_heaps,
List<? extends KNNHeap<D>> ps_heaps,
N pr,
N ps)
Processes the two data pages pr and ps and determines the k-nearest
neighbors of pr in ps.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
DBIDFactory.newHeap(D factory,
int k)
Create an appropriate heap for the distance function.
|
static <D extends Distance<D>> |
DBIDUtil.newHeap(D distancetype,
int k)
Create an appropriate heap for the distance type.
|
<D extends Distance<D>> |
DBIDFactory.newHeap(KNNList<D> exist)
Build a new heap from a given list.
|
static <D extends Distance<D>> |
DBIDUtil.newHeap(KNNList<D> exist)
Build a new heap from a given list.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DoubleDistanceKNNHeap
Interface for kNN heaps storing double distances and DBIDs.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
AbstractKNNHeap<P extends DistanceDBIDPair<D>,D extends Distance<D>>
Heap used for KNN management.
|
class |
DistanceDBIDPairKNNHeap<D extends Distance<D>>
Heap for collecting kNN candidates with arbitrary distance types.
|
class |
DoubleDistanceDBIDPairKNNHeap
Heap for collecting double-valued KNN instances.
|
class |
DoubleDistanceDBIDPairKNNListHeap
Finalized KNN List.
|
Constructor and Description |
---|
DistanceDBIDPairKNNList(KNNHeap<D> heap)
Constructor, to be called from KNNHeap only.
|
Modifier and Type | Class and Description |
---|---|
class |
DoubleDistanceIntegerDBIDKNNHeap
Class to efficiently manage a kNN heap.
|
class |
DoubleDistanceIntegerDBIDPairKNNListHeap
Finalized KNN List.
|
class |
DoubleDistanceIntegerDBIDSortedKNNList
Track the k nearest neighbors, with insertion sort to ensure the correct
order.
|
Modifier and Type | Method and Description |
---|---|
<D extends Distance<D>> |
AbstractIntegerDBIDFactory.newHeap(D factory,
int k) |
<D extends Distance<D>> |
AbstractIntegerDBIDFactory.newHeap(KNNList<D> exist) |
Modifier and Type | Method and Description |
---|---|
private void |
LinearScanDistanceKNNQuery.linearScanBatchKNN(ArrayDBIDs ids,
List<KNNHeap<D>> heaps)
Linear batch knn for arbitrary distance functions.
|
protected void |
LinearScanPrimitiveDistanceKNNQuery.linearScanBatchKNN(List<O> objs,
List<KNNHeap<D>> heaps)
Perform a linear scan batch kNN for primitive distance functions.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkMaxTree.preInsert(MkMaxEntry q,
MkMaxEntry nodeEntry,
KNNHeap<D> knns_q)
Adapts the knn distances before insertion of entry q.
|
Modifier and Type | Method and Description |
---|---|
private D |
GenericRStarTreeKNNQuery.expandNode(O object,
KNNHeap<D> knnList,
ComparableMinHeap<GenericDistanceSearchCandidate<D>> pq,
D maxDist,
int nodeID) |
Modifier and Type | Method and Description |
---|---|
protected void |
GenericRStarTreeKNNQuery.batchNN(AbstractRStarTreeNode<?,?> node,
Map<DBID,KNNHeap<D>> knnLists)
Performs a batch knn query.
|