Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.database.datastore |
General data store layer API (along the lines of
Map<DBID, T> - use everywhere!) |
de.lmu.ifi.dbs.elki.database.datastore.memory |
Memory data store implementation for ELKI.
|
de.lmu.ifi.dbs.elki.index.preprocessed |
Index structure based on preprocessors
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.result.optics |
Result classes for OPTICS.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Method and Description |
---|---|
WritableDataStore<KNNList<D>> |
KNNJoin.run(Database database,
Relation<V> relation)
Joins in the given spatial database to each object its k-nearest neighbors.
|
Modifier and Type | Method and Description |
---|---|
static double |
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector<?>> relation,
double[] normDistrFactor,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
static void |
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector<?>> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] covarianceMatrices,
int dimensionality)
Recompute the covariance matrixes.
|
Modifier and Type | Method and Description |
---|---|
private void |
SLINK.step1(DBIDRef id,
WritableDBIDDataStore pi,
WritableDataStore<D> lambda)
First step: Initialize P(id) = id, L(id) = infinity.
|
private void |
SLINK.step2(DBIDRef id,
DBIDs processedIDs,
DistanceQuery<O,D> distFunc,
WritableDataStore<D> m)
Second step: Determine the pairwise distances from all objects in the
pointer representation to the new object with the specified id.
|
private void |
SLINK.step3(DBIDRef id,
WritableDBIDDataStore pi,
WritableDataStore<D> lambda,
DBIDs processedIDs,
WritableDataStore<D> m)
Third step: Determine the values for P and L
|
private void |
SLINK.step3(DBIDRef id,
WritableDBIDDataStore pi,
WritableDataStore<D> lambda,
DBIDs processedIDs,
WritableDataStore<D> m)
Third step: Determine the values for P and L
|
private void |
SLINK.step4(DBIDRef id,
WritableDBIDDataStore pi,
WritableDataStore<D> lambda,
DBIDs processedIDs)
Fourth step: Actualize the clusters if necessary
|
Modifier and Type | Method and Description |
---|---|
private void |
P3C.assignUnassigned(Relation<V> relation,
WritableDataStore<double[]> probClusterIGivenX,
Vector[] means,
Matrix[] invCovMatr,
double[] clusterWeights,
ModifiableDBIDs unassigned)
Assign unassigned objects to best candidate based on shortest Mahalanobis
distance.
|
private void |
P3C.computeFuzzyMembership(Relation<V> relation,
ArrayList<P3C.Signature> clusterCores,
ModifiableDBIDs unassigned,
WritableDataStore<double[]> probClusterIGivenX,
double[] clusterWeights)
Computes a fuzzy membership with the weights based on which cluster cores
each data point is part of.
|
private ArrayList<P3C.ClusterCandidate> |
P3C.hardClustering(WritableDataStore<double[]> probClusterIGivenX,
List<P3C.Signature> clusterCores,
DBIDs dbids)
Creates a hard clustering from the specified soft membership matrix.
|
Modifier and Type | Method and Description |
---|---|
private void |
DWOF.clusterData(DBIDs ids,
RangeQuery<O,D> rnnQuery,
WritableDoubleDataStore radii,
WritableDataStore<ModifiableDBIDs> labels)
This method applies a density based clustering algorithm.
|
private int |
DWOF.updateSizes(DBIDs ids,
WritableDataStore<ModifiableDBIDs> labels,
WritableIntegerDataStore newSizes)
This method updates each object's cluster size after the clustering step.
|
Modifier and Type | Interface and Description |
---|---|
interface |
WritableDBIDDataStore
Data store specialized for doubles.
|
interface |
WritableDoubleDataStore
Data store specialized for doubles.
|
interface |
WritableDoubleDistanceDataStore
Data store specialized for doubles.
|
interface |
WritableIntegerDataStore
Data store specialized for doubles.
|
Modifier and Type | Method and Description |
---|---|
<T> WritableDataStore<T> |
WritableRecordStore.getStorage(int col,
Class<? super T> datatype)
Get a
WritableDataStore instance for a particular record column. |
static <T> WritableDataStore<T> |
DataStoreUtil.makeStorage(DBIDs ids,
int hints,
Class<? super T> dataclass)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
<T> WritableDataStore<T> |
DataStoreFactory.makeStorage(DBIDs ids,
int hints,
Class<? super T> dataclass)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
Modifier and Type | Class and Description |
---|---|
class |
ArrayDBIDStore
A class to answer representation queries using the stored Array.
|
class |
ArrayDoubleDistanceStore
A class to answer representation queries using the stored Array.
|
class |
ArrayDoubleStore
A class to answer representation queries using the stored Array.
|
class |
ArrayIntegerStore
A class to answer representation queries using the stored Array.
|
protected class |
ArrayRecordStore.StorageAccessor<T>
Access a single record in the given data.
|
class |
ArrayStore<T>
A class to answer representation queries using the stored Array.
|
class |
MapIntegerDBIDDBIDStore
Writable data store for double values.
|
class |
MapIntegerDBIDDoubleDistanceStore
Writable data store for double values.
|
class |
MapIntegerDBIDDoubleStore
Writable data store for double values.
|
class |
MapIntegerDBIDIntegerStore
Writable data store for double values.
|
protected class |
MapIntegerDBIDRecordStore.StorageAccessor<T>
Access a single record in the given data.
|
class |
MapIntegerDBIDStore<T>
A class to answer representation queries using a map.
|
protected class |
MapRecordStore.StorageAccessor<T>
Access a single record in the given data.
|
class |
MapStore<T>
A class to answer representation queries using a map.
|
Modifier and Type | Method and Description |
---|---|
<T> WritableDataStore<T> |
MapIntegerDBIDRecordStore.getStorage(int col,
Class<? super T> datatype) |
<T> WritableDataStore<T> |
ArrayRecordStore.getStorage(int col,
Class<? super T> datatype) |
<T> WritableDataStore<T> |
MapRecordStore.getStorage(int col,
Class<? super T> datatype) |
<T> WritableDataStore<T> |
MemoryDataStoreFactory.makeStorage(DBIDs ids,
int hints,
Class<? super T> dataclass) |
Modifier and Type | Field and Description |
---|---|
protected WritableDataStore<R> |
AbstractPreprocessorIndex.storage
The data store.
|
Modifier and Type | Field and Description |
---|---|
private WritableDataStore<TreeSet<DistanceDBIDPair<D>>> |
MaterializeKNNAndRKNNPreprocessor.materialized_RkNN
Additional data storage for RkNN.
|
Modifier and Type | Field and Description |
---|---|
private WritableDataStore<ClusterOrderEntry<D>> |
ClusterOrderResult.map
Map of object IDs to their cluster order entry
|
Modifier and Type | Method and Description |
---|---|
protected WritableDataStore<SameSizeKMeansAlgorithm.Meta> |
SameSizeKMeansAlgorithm.initializeMeta(Relation<V> relation,
List<? extends NumberVector<?>> means)
Initialize the metadata storage.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayModifiableDBIDs |
SameSizeKMeansAlgorithm.initialAssignment(List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
DBIDs ids) |
protected List<? extends NumberVector<?>> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<? extends NumberVector<?>> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
protected void |
SameSizeKMeansAlgorithm.transfer(WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
SameSizeKMeansAlgorithm.Meta meta,
ModifiableDBIDs src,
ModifiableDBIDs dst,
DBIDRef id,
Integer dstnum)
Transfer a single element from one cluster to another.
|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<? extends NumberVector<?>> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
PrimitiveDoubleDistanceFunction<NumberVector<?>> df)
Compute the distances of each object to all means.
|