Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments |
Pair-segment analysis of multiple clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.roc |
Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve)
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.result.textwriter.naming |
Naming schemes for clusters (for output when an algorithm doesn't generate cluster names).
|
de.lmu.ifi.dbs.elki.visualization.style |
Style management for ELKI visualizations.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.optics |
Visualizers that do work on OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection.
|
Modifier and Type | Method and Description |
---|---|
protected Cluster<BiclusterModel> |
AbstractBiclustering.defineBicluster(BitSet rows,
BitSet cols)
Defines a Bicluster as given by the included rows and columns.
|
protected Cluster<BiclusterModel> |
AbstractBiclustering.defineBicluster(long[] rows,
long[] cols)
Defines a Bicluster as given by the included rows and columns.
|
Modifier and Type | Method and Description |
---|---|
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> copacResult,
Relation<V> database,
int dimensionality)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
ERiC.isParent(ERiCDistanceFunction distanceFunction,
Cluster<CorrelationModel<V>> parent,
Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private void |
ERiC.buildHierarchy(Clustering<CorrelationModel<V>> clustering,
List<List<Cluster<CorrelationModel<V>>>> clusterMap,
DistanceQuery<V,IntegerDistance> query) |
private boolean |
ERiC.isParent(ERiCDistanceFunction distanceFunction,
Cluster<CorrelationModel<V>> parent,
Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private Cluster<DendrogramModel<D>> |
ExtractFlatClusteringFromHierarchy.makeCluster(DBIDRef lead,
D depth,
DBIDs members)
Make the cluster for the given object
|
Modifier and Type | Method and Description |
---|---|
private Cluster<SubspaceModel<V>> |
DOC.makeCluster(Relation<V> relation,
DBIDs C,
BitSet D)
Utility method to create a subspace cluster from a list of DBIDs and the
relevant attributes.
|
private Cluster<SubspaceModel<V>> |
DOC.runDOC(Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel<V>> |
DOC.runFastDOC(Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
Modifier and Type | Method and Description |
---|---|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
private List<Cluster<SubspaceModel<V>>> |
DiSH.sortClusters(Relation<V> database,
Map<BitSet,List<Pair<BitSet,ArrayModifiableDBIDs>>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
descending order.
|
Modifier and Type | Method and Description |
---|---|
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
Hierarchy.Iter<Cluster<SubspaceModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Method and Description |
---|---|
private Subspace |
SUBCLU.bestSubspace(List<Subspace> subspaces,
Subspace candidate,
TreeMap<Subspace,List<Cluster<Model>>> clusterMap)
Determines the
d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
private void |
DiSH.buildHierarchy(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Clustering<SubspaceModel<V>> clustering,
List<Cluster<SubspaceModel<V>>> clusters,
int dimensionality)
Builds the cluster hierarchy.
|
private boolean |
DiSH.isParent(Relation<V> database,
DiSHDistanceFunction.Instance<V> distFunc,
Cluster<SubspaceModel<V>> parent,
Hierarchy.Iter<Cluster<SubspaceModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
the children clusters.
|
Modifier and Type | Field and Description |
---|---|
static Comparator<Cluster<?>> |
Cluster.BY_NAME_SORTER
A partial comparator for Clusters, based on their name.
|
private ModifiableHierarchy<Cluster<M>> |
Clustering.hierarchy
Cluster hierarchy.
|
private List<Cluster<M>> |
Clustering.toplevelclusters
Keep a list of top level clusters.
|
Modifier and Type | Method and Description |
---|---|
List<Cluster<M>> |
Clustering.getAllClusters()
Collect all clusters (recursively) into a List.
|
Hierarchy<Cluster<M>> |
Clustering.getClusterHierarchy()
Get the cluster hierarchy.
|
List<Cluster<M>> |
Clustering.getToplevelClusters()
Return top level clusters
|
Hierarchy.Iter<Cluster<M>> |
Clustering.iterToplevelClusters()
Iterate over the top level clusters.
|
Modifier and Type | Method and Description |
---|---|
void |
Clustering.addChildCluster(Cluster<M> parent,
Cluster<M> child)
Add a cluster to the clustering.
|
void |
Clustering.addChildCluster(Cluster<M> parent,
Cluster<M> child)
Add a cluster to the clustering.
|
void |
Clustering.addToplevelCluster(Cluster<M> clus)
Add a cluster to the clustering.
|
Constructor and Description |
---|
Clustering(String name,
String shortname,
List<Cluster<M>> toplevelclusters)
Constructor with a list of top level clusters
|
Modifier and Type | Field and Description |
---|---|
private List<List<? extends Cluster<?>>> |
Segments.clusters
Clusters
|
Modifier and Type | Method and Description |
---|---|
private void |
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs) |
private void |
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs,
int depth,
SetDBIDs first,
SetDBIDs second,
int[] path,
boolean objectsegment) |
Modifier and Type | Method and Description |
---|---|
static <D extends Distance<D>> |
ROC.computeROCAUCDistanceResult(int size,
Cluster<?> clus,
DistanceDBIDList<D> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster.
|
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Field and Description |
---|---|
private Map<Cluster<?>,String> |
SimpleEnumeratingScheme.names
Assigned cluster names.
|
Modifier and Type | Method and Description |
---|---|
String |
SimpleEnumeratingScheme.getNameFor(Cluster<?> cluster)
Retrieve the cluster name.
|
String |
NamingScheme.getNameFor(Cluster<?> cluster)
Retrieve a name for the given cluster.
|
Modifier and Type | Field and Description |
---|---|
(package private) gnu.trove.map.TObjectIntMap<Cluster<?>> |
ClusterStylingPolicy.cmap
Map from cluster objects to color offsets.
|
Modifier and Type | Method and Description |
---|---|
int |
ClusterStylingPolicy.getStyleForCluster(Cluster<?> c)
Get the style number for a cluster.
|
Modifier and Type | Method and Description |
---|---|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
private void |
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
int depth,
Map<Cluster<?>,String> colormap)
Recursively draw clusters
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size) |
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size) |