Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Class and Description |
---|
CentroidLinkageMethod
Centroid linkage clustering method, aka UPGMC: Unweighted Pair-Group Method
using Centroids.
|
CompleteLinkageMethod
Complete-linkage clustering method.
|
ExtractFlatClusteringFromHierarchy
Extract a flat clustering from a full hierarchy, represented in pointer form.
|
ExtractFlatClusteringFromHierarchy.OutputMode
Output mode.
|
ExtractFlatClusteringFromHierarchy.ThresholdMode
Threshold mode.
|
GroupAverageLinkageMethod
Group-average linkage clustering method.
|
HierarchicalClusteringAlgorithm
Interface for hierarchical clustering algorithms.
|
LinkageMethod
Abstract interface for implementing a new linkage method into hierarchical
clustering.
|
MedianLinkageMethod
Median-linkage clustering method: Weighted pair group method using centroids
(WPGMC).
|
NaiveAgglomerativeHierarchicalClustering
This tutorial will step you through implementing a well known clustering
algorithm, agglomerative hierarchical clustering, in multiple steps.
|
PointerHierarchyRepresentationResult
The pointer representation of a hierarchical clustering.
|
SingleLinkageMethod
Single-linkage clustering method.
|
SLINK
Implementation of the efficient Single-Link Algorithm SLINK of R.
|
WardLinkageMethod
Ward's method clustering method.
|
WeightedAverageLinkageMethod
Weighted average linkage clustering method.
|
Class and Description |
---|
HierarchicalClusteringAlgorithm
Interface for hierarchical clustering algorithms.
|
PointerHierarchyRepresentationResult
The pointer representation of a hierarchical clustering.
|