Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.utilities.scaling |
Scaling functions: linear, logarithmic, gamma, clipping, ...
|
Modifier and Type | Method and Description |
---|---|
protected Pair<WritableDoubleDataStore,DoubleMinMax> |
LOF.computeLOFs(DBIDs ids,
DoubleDataStore lrds,
KNNQuery<O,D> knnRefer)
Computes the Local outlier factor (LOF) of the specified objects.
|
Modifier and Type | Method and Description |
---|---|
private DoubleMinMax |
DistanceStatisticsWithClasses.exactMinMax(Relation<O> relation,
DistanceQuery<O,D> distFunc)
Compute the exact maximum and minimum.
|
private DoubleMinMax |
DistanceStatisticsWithClasses.sampleMinMax(Relation<O> relation,
DistanceQuery<O,D> distFunc)
Estimate minimum and maximum via sampling.
|
Modifier and Type | Method and Description |
---|---|
static DoubleMinMax |
VectorUtil.getRangeDouble(NumberVector<?> vec)
Return the range across all dimensions.
|
Modifier and Type | Method and Description |
---|---|
DoubleMinMax |
MeanVarianceMinMax.getDoubleMinMax()
Get the current minimum and maximum.
|
static DoubleMinMax[] |
DoubleMinMax.newArray(int size)
Generate a new array of initialized DoubleMinMax objects (with default
constructor)
|
Modifier and Type | Field and Description |
---|---|
private DoubleMinMax |
GrahamScanConvexHull2D.minmaxX
Min/Max in X
|
private DoubleMinMax |
GrahamScanConvexHull2D.minmaxY
Min/Max in Y
|
Constructor and Description |
---|
LinearScaling(DoubleMinMax minmax)
Constructor from a double minmax.
|