| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | K-means clustering and variations. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | FirstKInitialMeans<V>Initialize K-means by using the first k objects as initial means. | 
| class  | KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>>K-Means++ initialization for k-means. | 
| class  | PAMInitialMeans<V,D extends NumberDistance<D,?>>PAM initialization for k-means (and of course, PAM). | 
| class  | RandomlyChosenInitialMeans<V>Initialize K-means by randomly choosing k exsiting elements as cluster
 centers. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected KMedoidsInitialization<V> | KMedoidsEM. initializerMethod to choose initial means. | 
| protected KMedoidsInitialization<V> | KMedoidsEM.Parameterizer. initializer | 
| protected KMedoidsInitialization<V> | KMedoidsPAM. initializerMethod to choose initial means. | 
| protected KMedoidsInitialization<V> | KMedoidsPAM.Parameterizer. initializer | 
| Constructor and Description | 
|---|
| KMedoidsEM(PrimitiveDistanceFunction<? super V,D> distanceFunction,
          int k,
          int maxiter,
          KMedoidsInitialization<V> initializer)Constructor. | 
| KMedoidsPAM(PrimitiveDistanceFunction<? super V,D> distanceFunction,
           int k,
           int maxiter,
           KMedoidsInitialization<V> initializer)Constructor. |