
public final class MathUtil extends Object
| Modifier and Type | Field and Description |
|---|---|
(package private) static double[] |
ERFAPP_A
Coefficients for erf approximation.
|
(package private) static double[] |
ERFAPP_B
Coefficients for erf approximation.
|
(package private) static double[] |
ERFAPP_C
Coefficients for erf approximation.
|
(package private) static double[] |
ERFAPP_D
Coefficients for erf approximation.
|
(package private) static double[] |
ERFAPP_P
Coefficients for erf approximation.
|
(package private) static double[] |
ERFAPP_Q
Coefficients for erf approximation.
|
(package private) static double[] |
ERFINV_A
Coefficients for erfinv approximation, rational version
|
(package private) static double[] |
ERFINV_B
Coefficients for erfinv approximation, rational version
|
(package private) static double[] |
ERFINV_C
Coefficients for erfinv approximation, rational version
|
(package private) static double[] |
ERFINV_D
Coefficients for erfinv approximation, rational version
|
(package private) static double[] |
LANCZOS
LANCZOS-Coefficients for Gamma approximation.
|
(package private) static double |
NUM_PRECISION
Numerical precision to use
|
static double |
ONE_BY_SQRTPI
Precomputed value of 1 / sqrt(pi)
|
(package private) static double |
P_HIGH
Treshold for switching nethods for erfinv approximation
|
(package private) static double |
P_LOW
Treshold for switching nethods for erfinv approximation
|
static double |
SQRT2
Square root of 2.
|
static double |
SQRTHALF
Square root of 0.5 == 1 / Sqrt(2)
|
static double |
SQRTTWOPI
Squre root of two times Pi.
|
static double |
TWOPI
Two times Pi.
|
| Modifier | Constructor and Description |
|---|---|
private |
MathUtil()
Fake constructor for static class.
|
| Modifier and Type | Method and Description |
|---|---|
static double |
approximateBinomialCoefficient(int n,
int k)
Binomial coefficent, also known as "n choose k")
|
static double |
approximateFactorial(int n)
Compute the Factorial of n, often written as
c! |
static long |
binomialCoefficient(long n,
long k)
Binomial coefficient, also known as "n choose k".
|
static double |
cosineSimilarity(Vector v1,
Vector v2)
Compute the cosine similarity for two vectors.
|
static double |
deg2rad(double deg)
Convert Degree to Radians
|
static double |
erf(double x)
Error function for Gaussian distributions = Normal distributions.
|
static double |
erfc(double x)
Complementary error function for Gaussian distributions = Normal
distributions.
|
static double |
erfinv(double x)
Inverse error function.
|
static BigInteger |
factorial(BigInteger n)
Compute the Factorial of n, often written as
c! |
static long |
factorial(int n)
Compute the Factorial of n, often written as
c! |
static double |
hypotenuse(double a,
double b)
Computes the square root of the sum of the squared arguments without under
or overflow.
|
static double |
latlngDistance(double lat1,
double lon1,
double lat2,
double lon2)
Compute the approximate on-earth-surface distance of two points.
|
static double |
logGamma(double x)
Compute logGamma.
|
static double |
mahalanobisDistance(Matrix weightMatrix,
Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix
|
static double |
normalCDF(double x,
double mu,
double sigma)
Cumulative probability density function (CDF) of a normal distribution.
|
static double |
normalPDF(double x,
double mu,
double sigma)
Probability density function of the normal distribution.
|
static double |
normalProbit(double x,
double mu,
double sigma)
Inverse cumulative probability density function (probit) of a normal
distribution.
|
static double |
pearsonCorrelationCoefficient(double[] x,
double[] y)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
pearsonCorrelationCoefficient(NumberVector<?,?> x,
NumberVector<?,?> y)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
rad2deg(double rad)
Radians to Degree
|
static double[] |
randomDoubleArray(int len)
Produce an array of random numbers in [0:1]
|
static double[] |
randomDoubleArray(int len,
Random r)
Produce an array of random numbers in [0:1]
|
static double |
regularizedGammaP(double a,
double x)
Returns the regularized gamma function P(a, x).
|
static double |
regularizedGammaQ(double a,
double x)
Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
|
static double |
standardNormalProbit(double d)
Approximate the inverse error function for normal distributions.
|
static long |
sumFirstIntegers(long i)
Compute the sum of the i first integers.
|
static double |
weightedPearsonCorrelationCoefficient(double[] x,
double[] y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
static double |
weightedPearsonCorrelationCoefficient(NumberVector<?,?> x,
NumberVector<?,?> y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two
FeatureVectors.
|
public static final double TWOPI
public static final double SQRTTWOPI
public static final double SQRT2
public static final double SQRTHALF
public static final double ONE_BY_SQRTPI
static final double[] ERFAPP_A
static final double[] ERFAPP_B
static final double[] ERFAPP_C
static final double[] ERFAPP_D
static final double[] ERFAPP_P
static final double[] ERFAPP_Q
static final double P_LOW
static final double P_HIGH
static final double[] ERFINV_A
static final double[] ERFINV_B
static final double[] ERFINV_C
static final double[] ERFINV_D
static final double[] LANCZOS
static final double NUM_PRECISION
public static double hypotenuse(double a,
double b)
a - first cathetusb - second cathetussqrt(a<sup>2</sup> + b<sup>2</sup>)public static double mahalanobisDistance(Matrix weightMatrix, Vector o1_minus_o2)
weightMatrix - Weight Matrixo1_minus_o2 - Delta vectorpublic static double pearsonCorrelationCoefficient(NumberVector<?,?> x, NumberVector<?,?> y)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors.
x - first FeatureVectory - second FeatureVectorpublic static double weightedPearsonCorrelationCoefficient(NumberVector<?,?> x, NumberVector<?,?> y, double[] weights)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors.
x - first FeatureVectory - second FeatureVectorpublic static double pearsonCorrelationCoefficient(double[] x,
double[] y)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors.
x - first FeatureVectory - second FeatureVectorpublic static double weightedPearsonCorrelationCoefficient(double[] x,
double[] y,
double[] weights)
Provides the Pearson product-moment correlation coefficient for two FeatureVectors.
x - first FeatureVectory - second FeatureVectorpublic static BigInteger factorial(BigInteger n)
c! in
mathematics.
Use this method if for large values of n.
n - Note: n >= 0. This BigInteger n will be 0
after this method finishes.public static long factorial(int n)
c! in
mathematics.n - Note: n >= 0public static long binomialCoefficient(long n,
long k)
Binomial coefficient, also known as "n choose k".
n - Total number of samples. n > 0k - Number of elements to choose. n >= k,
k >= 0public static double approximateFactorial(int n)
c! in
mathematics.n - Note: n >= 0public static double approximateBinomialCoefficient(int n,
int k)
Binomial coefficent, also known as "n choose k")
n - Total number of samples. n > 0k - Number of elements to choose. n >= k,
k >= 0public static double erfc(double x)
x - parameter valuepublic static double erf(double x)
x - parameter valuepublic static double erfinv(double x)
x - parameter valuepublic static double standardNormalProbit(double d)
http://www.math.uio.no/~jacklam/notes/invnorm/index.html
by Peter John Acklam
d - Quantile. Must be in [0:1], obviously.public static double normalPDF(double x,
double mu,
double sigma)
1/(SQRT(2*pi*sigma^2)) * e^(-(x-mu)^2/2sigma^2)
x - The value.mu - The mean.sigma - The standard deviation.public static double normalCDF(double x,
double mu,
double sigma)
x - value to evaluate CDF atmu - Mean valuesigma - Standard deviation.public static double normalProbit(double x,
double mu,
double sigma)
x - value to evaluate probit function atmu - Mean valuesigma - Standard deviation.public static double logGamma(double x)
x - Parameter xpublic static double regularizedGammaP(double a,
double x)
a - Parameter ax - Parameter xpublic static double regularizedGammaQ(double a,
double x)
a - parameter ax - parameter xpublic static long sumFirstIntegers(long i)
i - maximum summandpublic static double[] randomDoubleArray(int len)
len - Lengthpublic static double[] randomDoubleArray(int len,
Random r)
len - Lengthr - Random generatorpublic static double deg2rad(double deg)
deg - Degree valuepublic static double rad2deg(double rad)
rad - Radians valuepublic static double latlngDistance(double lat1,
double lon1,
double lat2,
double lon2)
lat1 - Latitude of first point in degreelon1 - Longitude of first point in degreelat2 - Latitude of second point in degreelon2 - Longitude of second point in degree