Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.database.query |
Database queries - computing distances, neighbors, similarities - API and general documentation.
|
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries.
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries.
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.evaluation.roc |
Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve)
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj |
Index using a preprocessed local subspaces.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
Metrical index structures based on the concepts of the M-Tree
supporting processing of reverse k nearest neighbor queries by
using the k-nn distances of the entries.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
Classes for performing queries (knn, range, ...) on metrical trees.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing.
|
de.lmu.ifi.dbs.elki.utilities.datastructures.heap |
Heap structures and variations such as bounded priority heaps.
|
Modifier and Type | Method and Description |
---|---|
private Map<DBID,List<DistanceResultPair<DoubleDistance>>> |
PROCLUS.getLocalities(DBIDs medoids,
Relation<V> database,
DistanceQuery<V,DoubleDistance> distFunc,
RangeQuery<V,DoubleDistance> rangeQuery)
Computes the localities of the specified medoids: for each medoid m the
objects in the sphere centered at m with radius minDist are determined,
where minDist is the minimum distance between medoid m and any other medoid
m_i.
|
Modifier and Type | Method and Description |
---|---|
protected List<DistanceResultPair<D>> |
ReferenceBasedOutlierDetection.computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point.
|
Modifier and Type | Method and Description |
---|---|
protected double |
ReferenceBasedOutlierDetection.computeDensity(List<DistanceResultPair<D>> referenceDists,
int index)
Computes the density of an object.
|
private ArrayModifiableDBIDs |
OnlineLOF.LOFKNNListener.mergeIDs(List<List<DistanceResultPair<D>>> queryResults,
DBIDs... ids)
Merges the ids of the query result with the specified ids.
|
Modifier and Type | Class and Description |
---|---|
class |
DoubleDistanceResultPair
Optimized DistanceResultPair that avoids/postpones an extra layer of boxing
for double values.
|
class |
GenericDistanceResultPair<D extends Distance<D>>
Trivial implementation using a generic pair.
|
Modifier and Type | Method and Description |
---|---|
int |
DistanceResultPair.compareByDistance(DistanceResultPair<D> o)
Compare value, but by distance only.
|
int |
GenericDistanceResultPair.compareByDistance(DistanceResultPair<D> o) |
int |
DoubleDistanceResultPair.compareByDistance(DistanceResultPair<DoubleDistance> o) |
int |
GenericDistanceResultPair.compareTo(DistanceResultPair<D> o) |
int |
DoubleDistanceResultPair.compareTo(DistanceResultPair<DoubleDistance> o) |
Modifier and Type | Method and Description |
---|---|
List<List<DistanceResultPair<D>>> |
KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method
|
List<List<DistanceResultPair<D>>> |
PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<List<DistanceResultPair<D>>> |
LinearScanKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<List<DistanceResultPair<D>>> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<DistanceResultPair<D>> |
KNNQuery.getKNNForDBID(DBID id,
int k)
Get the k nearest neighbors for a particular id.
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
PreprocessorKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
LinearScanKNNQuery.getKNNForDBID(DBID id,
int k) |
abstract List<DistanceResultPair<D>> |
AbstractDistanceKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
KNNQuery.getKNNForObject(O obj,
int k)
Get the k nearest neighbors for a particular id.
|
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceKNNQuery.getKNNForObject(O obj,
int k) |
List<DistanceResultPair<D>> |
PreprocessorKNNQuery.getKNNForObject(O obj,
int k) |
List<DistanceResultPair<D>> |
LinearScanKNNQuery.getKNNForObject(O obj,
int k) |
abstract List<DistanceResultPair<D>> |
AbstractDistanceKNNQuery.getKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
List<List<DistanceResultPair<D>>> |
RangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids,
D range)
Bulk query method
|
List<List<DistanceResultPair<D>>> |
AbstractDistanceRangeQuery.getRangeForBulkDBIDs(ArrayDBIDs ids,
D range) |
List<DistanceResultPair<D>> |
LinearScanPrimitiveDistanceRangeQuery.getRangeForDBID(DBID id,
D range) |
List<DistanceResultPair<D>> |
RangeQuery.getRangeForDBID(DBID id,
D range)
Get the nearest neighbors for a particular id in a given query range
|
abstract List<DistanceResultPair<D>> |
AbstractDistanceRangeQuery.getRangeForDBID(DBID id,
D range) |
List<DistanceResultPair<D>> |
LinearScanRangeQuery.getRangeForDBID(DBID id,
D range) |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range) |
List<DistanceResultPair<D>> |
RangeQuery.getRangeForObject(O obj,
D range)
Get the nearest neighbors for a particular object in a given query range
|
abstract List<DistanceResultPair<D>> |
AbstractDistanceRangeQuery.getRangeForObject(O obj,
D range) |
List<DistanceResultPair<D>> |
LinearScanRangeQuery.getRangeForObject(O obj,
D range) |
List<DistanceResultPair<DoubleDistance>> |
LinearScanRawDoubleDistanceRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
List<List<DistanceResultPair<D>>> |
LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<List<DistanceResultPair<D>>> |
RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method for reverse k nearest neighbors for ids.
|
List<List<DistanceResultPair<D>>> |
PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<DistanceResultPair<D>> |
LinearScanRKNNQuery.getRKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
RKNNQuery.getRKNNForDBID(DBID id,
int k)
Get the reverse k nearest neighbors for a particular id.
|
List<DistanceResultPair<D>> |
PreprocessorRKNNQuery.getRKNNForDBID(DBID id,
int k) |
abstract List<DistanceResultPair<D>> |
AbstractRKNNQuery.getRKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
LinearScanRKNNQuery.getRKNNForObject(O obj,
int k) |
List<DistanceResultPair<D>> |
RKNNQuery.getRKNNForObject(O obj,
int k)
Get the reverse k nearest neighbors for a particular object.
|
List<DistanceResultPair<D>> |
PreprocessorRKNNQuery.getRKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
protected D |
MinKDistance.computeReachdist(List<DistanceResultPair<D>> neighborhood,
D truedist)
Actually compute the distance, whichever way we obtained the neighborhood
above.
|
Modifier and Type | Field and Description |
---|---|
private Iterator<DistanceResultPair<D>> |
ROC.DistanceResultAdapter.iter
Original Iterator
|
Modifier and Type | Method and Description |
---|---|
static <D extends Distance<D>> |
ROC.computeROCAUCDistanceResult(int size,
Cluster<?> clus,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster.
|
static <D extends Distance<D>> |
ROC.computeROCAUCDistanceResult(int size,
DBIDs ids,
List<DistanceResultPair<D>> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster.
|
Constructor and Description |
---|
ROC.DistanceResultAdapter(Iterator<DistanceResultPair<D>> iter)
Constructor
|
Modifier and Type | Field and Description |
---|---|
private WritableDataStore<SortedSet<DistanceResultPair<D>>> |
MaterializeKNNAndRKNNPreprocessor.materialized_RkNN
Additional data storage for RkNN.
|
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<D>> |
MaterializeKNNPreprocessor.get(DBID objid)
Get the k nearest neighbors.
|
List<DistanceResultPair<D>> |
MaterializeKNNAndRKNNPreprocessor.getKNN(DBID id)
Returns the materialized kNNs of the specified id.
|
List<DistanceResultPair<D>> |
MaterializeKNNAndRKNNPreprocessor.getRKNN(DBID id)
Returns the materialized RkNNs of the specified id.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayDBIDs |
MaterializeKNNPreprocessor.extractAndRemoveIDs(List<List<DistanceResultPair<D>>> extraxt,
ArrayDBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
Modifier and Type | Method and Description |
---|---|
protected abstract List<DistanceResultPair<DoubleDistance>> |
AbstractFilteredPCAIndex.objectsForPCA(DBID id)
Returns the objects to be considered within the PCA for the specified query
object.
|
protected List<DistanceResultPair<DoubleDistance>> |
KNNQueryFilteredPCAIndex.objectsForPCA(DBID id) |
protected List<DistanceResultPair<DoubleDistance>> |
RangeQueryFilteredPCAIndex.objectsForPCA(DBID id) |
Modifier and Type | Method and Description |
---|---|
protected abstract P |
AbstractSubspaceProjectionIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<NV> relation)
This method implements the type of variance analysis to be computed for a
given point.
|
protected SubspaceProjectionResult |
PreDeConSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database) |
protected PCAFilteredResult |
FourCSubspaceIndex.computeProjection(DBID id,
List<DistanceResultPair<D>> neighbors,
Relation<V> database) |
Modifier and Type | Method and Description |
---|---|
abstract List<DistanceResultPair<D>> |
AbstractMkTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
private List<DistanceResultPair<D>> |
MkAppTree.doReverseKNNQuery(int k,
DBID q)
Performs a reverse knn query.
|
List<DistanceResultPair<D>> |
MkAppTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<D>> |
MkCoPTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkCoPTree.doReverseKNNQuery(int k,
DBID q,
List<DistanceResultPair<D>> result,
ModifiableDBIDs candidates)
Performs a reverse knn query.
|
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<D>> |
MkMaxTree.reverseKNNQuery(DBID id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
private void |
MkMaxTree.doReverseKNNQuery(DBID q,
MkMaxTreeNode<O,D> node,
MkMaxEntry<D> node_entry,
List<DistanceResultPair<D>> result)
Performs a reverse k-nearest neighbor query in the specified subtree for
the given query object with k =
AbstractMkTreeUnified.k_max . |
Modifier and Type | Method and Description |
---|---|
List<DistanceResultPair<D>> |
MkTabTree.reverseKNNQuery(DBID id,
int k) |
Modifier and Type | Method and Description |
---|---|
private void |
MkTabTree.doReverseKNNQuery(int k,
DBID q,
MkTabEntry<D> node_entry,
MkTabTreeNode<O,D> node,
List<DistanceResultPair<D>> result)
Performs a k-nearest neighbor query in the specified subtree for the given
query object and the given parameter k.
|
Modifier and Type | Method and Description |
---|---|
List<List<DistanceResultPair<D>>> |
MetricalIndexKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<DistanceResultPair<D>> |
MetricalIndexKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
MetricalIndexKNNQuery.getKNNForObject(O obj,
int k) |
List<DistanceResultPair<D>> |
MetricalIndexRangeQuery.getRangeForDBID(DBID id,
D range) |
List<DistanceResultPair<D>> |
MetricalIndexRangeQuery.getRangeForObject(O obj,
D range) |
List<List<DistanceResultPair<D>>> |
MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<DistanceResultPair<D>> |
MkTreeRKNNQuery.getRKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
MkTreeRKNNQuery.getRKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
private void |
MetricalIndexRangeQuery.doRangeQuery(DBID o_p,
AbstractMTreeNode<O,D,?,?> node,
DBID q,
D r_q,
List<DistanceResultPair<D>> result)
Performs a range query on the specified subtree.
|
private void |
MetricalIndexRangeQuery.doRangeQuery(DBID o_p,
AbstractMTreeNode<O,D,?,?> node,
O q,
D r_q,
List<DistanceResultPair<D>> result)
Performs a range query on the specified subtree.
|
Modifier and Type | Method and Description |
---|---|
protected List<DistanceResultPair<D>> |
GenericRStarTreeRangeQuery.doRangeQuery(O object,
D epsilon)
Perform the actual query process.
|
protected List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.doRangeQuery(O object,
double epsilon)
Perform the actual query process.
|
List<List<DistanceResultPair<DoubleDistance>>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<List<DistanceResultPair<D>>> |
GenericRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<D>> |
GenericRStarTreeKNNQuery.getKNNForDBID(DBID id,
int k) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeKNNQuery.getKNNForObject(O obj,
int k) |
List<DistanceResultPair<D>> |
GenericRStarTreeKNNQuery.getKNNForObject(O obj,
int k) |
List<DistanceResultPair<D>> |
GenericRStarTreeRangeQuery.getRangeForDBID(DBID id,
D range) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForDBID(DBID id,
DoubleDistance range) |
List<DistanceResultPair<D>> |
GenericRStarTreeRangeQuery.getRangeForObject(O obj,
D range) |
List<DistanceResultPair<DoubleDistance>> |
DoubleDistanceRStarTreeRangeQuery.getRangeForObject(O obj,
DoubleDistance range) |
Modifier and Type | Method and Description |
---|---|
<D extends NumberDistance<?,?>> |
PCARunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection
|
<D extends NumberDistance<?,?>> |
PCAFilteredRunner.processQueryResult(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Run PCA on a QueryResult Collection
|
<D extends NumberDistance<?,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database) |
<D extends NumberDistance<?,?>> |
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
<D extends NumberDistance<?,?>> |
WeightedCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
<D extends NumberDistance<?,?>> |
AbstractCovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k) |
<D extends NumberDistance<?,?>> |
CovarianceMatrixBuilder.processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection
By default it will just collect the ids and run processIds
|
Modifier and Type | Field and Description |
---|---|
(package private) Iterator<? extends DistanceResultPair<?>> |
KNNList.DBIDItr.itr
The real iterator.
|
(package private) Iterator<? extends DistanceResultPair<D>> |
KNNList.DistanceItr.itr
The real iterator.
|
(package private) List<? extends DistanceResultPair<?>> |
KNNList.DBIDView.parent
The true list.
|
(package private) List<? extends DistanceResultPair<D>> |
KNNList.DistanceView.parent
The true list.
|
Modifier and Type | Method and Description |
---|---|
DistanceResultPair<D> |
KNNList.remove(int index) |
DistanceResultPair<D> |
KNNList.set(int index,
DistanceResultPair<D> element) |
Modifier and Type | Method and Description |
---|---|
ArrayList<DistanceResultPair<D>> |
KNNHeap.toSortedArrayList() |
Modifier and Type | Method and Description |
---|---|
boolean |
KNNList.add(DistanceResultPair<D> e) |
void |
KNNList.add(int index,
DistanceResultPair<D> element) |
int |
KNNHeap.Comp.compare(DistanceResultPair<D> o1,
DistanceResultPair<D> o2) |
int |
KNNHeap.Comp.compare(DistanceResultPair<D> o1,
DistanceResultPair<D> o2) |
DistanceResultPair<D> |
KNNList.set(int index,
DistanceResultPair<D> element) |
Modifier and Type | Method and Description |
---|---|
boolean |
KNNList.addAll(Collection<? extends DistanceResultPair<D>> c) |
boolean |
KNNList.addAll(int index,
Collection<? extends DistanceResultPair<D>> c) |
static ArrayDBIDs |
KNNList.asDBIDs(List<? extends DistanceResultPair<?>> list)
View as ArrayDBIDs
|
static <D extends Distance<D>> |
KNNList.asDistanceList(List<? extends DistanceResultPair<D>> list)
View as list of distances
|
Constructor and Description |
---|
KNNList.DBIDItr(Iterator<? extends DistanceResultPair<?>> itr)
Constructor.
|
KNNList.DBIDView(List<? extends DistanceResultPair<?>> parent)
Constructor.
|
KNNList.DistanceItr(Iterator<? extends DistanceResultPair<D>> itr)
Constructor.
|
KNNList.DistanceView(List<? extends DistanceResultPair<D>> parent)
Constructor.
|