| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms
 
 Clustering algorithms are supposed to implement the  
Algorithm-Interface. | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.database.datastore | 
 General data store layer API (along the lines of  
Map<DBID, T> - use everywhere!) | 
| de.lmu.ifi.dbs.elki.database.datastore.memory | 
 Memory data store implementation for ELKI. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed | 
 Index structure based on preprocessors 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | 
 Indexes providing KNN and rKNN data. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private D | 
KNNJoin.processDataPages(DistanceQuery<V,D> distQ,
                N pr,
                N ps,
                WritableDataStore<KNNHeap<D>> knnLists,
                D pr_knn_distance)
Processes the two data pages pr and ps and determines the k-nearest
 neighbors of pr in ps. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private WritableDataStore<D> | 
SLINK.lambda
The values of the function Lambda of the pointer representation. 
 | 
private WritableDataStore<DBID> | 
SLINK.pi
The values of the function Pi of the pointer representation. 
 | 
private WritableDataStore<double[]> | 
EM.probClusterIGivenX
Store the individual probabilities, for use by EMOutlierDetection etc. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected double | 
EM.assignProbabilitiesToInstances(Relation<V> database,
                              List<Double> normDistrFactor,
                              List<V> means,
                              List<Matrix> invCovMatr,
                              List<Double> clusterWeights,
                              WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
 compute the expectation value of the current mixture of distributions. 
 | 
private void | 
SLINK.step2(DBID newID,
     DBIDs processedIDs,
     DistanceQuery<O,D> distFunc,
     WritableDataStore<D> m)
Second step: Determine the pairwise distances from all objects in the
 pointer representation to the new object with the specified id. 
 | 
private void | 
SLINK.step3(DBID newID,
     DBIDs processedIDs,
     WritableDataStore<D> m)
Third step: Determine the values for P and L 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private WritableDataStore<Double> | 
LOF.LOFResult.lofs
The LOF values of the objects. 
 | 
private WritableDataStore<Double> | 
LOF.LOFResult.lrds
The LRD values of the objects. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected WritableDataStore<Double> | 
LOF.computeLRDs(DBIDs ids,
           KNNQuery<O,D> knnReach)
Computes the local reachability density (LRD) of the specified objects. 
 | 
WritableDataStore<Double> | 
LOF.LOFResult.getLofs()  | 
WritableDataStore<Double> | 
LOF.LOFResult.getLrds()  | 
| Modifier and Type | Method and Description | 
|---|---|
protected Pair<WritableDataStore<Double>,DoubleMinMax> | 
LOF.computeLOFs(DBIDs ids,
           DataStore<Double> lrds,
           KNNQuery<O,D> knnRefer)
Computes the Local outlier factor (LOF) of the specified objects. 
 | 
| Constructor and Description | 
|---|
LOF.LOFResult(OutlierResult result,
             KNNQuery<O,D> kNNRefer,
             KNNQuery<O,D> kNNReach,
             WritableDataStore<Double> lrds,
             WritableDataStore<Double> lofs)
Encapsulates information generated during a run of the  
LOF
 algorithm. | 
LOF.LOFResult(OutlierResult result,
             KNNQuery<O,D> kNNRefer,
             KNNQuery<O,D> kNNReach,
             WritableDataStore<Double> lrds,
             WritableDataStore<Double> lofs)
Encapsulates information generated during a run of the  
LOF
 algorithm. | 
| Modifier and Type | Method and Description | 
|---|---|
<T> WritableDataStore<T> | 
WritableRecordStore.getStorage(int col,
          Class<? super T> datatype)
Get a  
WritableDataStore instance for a particular record column. | 
static <T> WritableDataStore<T> | 
DataStoreUtil.makeStorage(DBIDs ids,
           int hints,
           Class<? super T> dataclass)
Make a new storage, to associate the given ids with an object of class dataclass. 
 | 
<T> WritableDataStore<T> | 
DataStoreFactory.makeStorage(DBIDs ids,
           int hints,
           Class<? super T> dataclass)
Make a new storage, to associate the given ids with an object of class dataclass. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
protected class  | 
ArrayRecordStore.StorageAccessor<T>
Access a single record in the given data. 
 | 
class  | 
ArrayStore<T>
A class to answer representation queries using the stored Array. 
 | 
protected class  | 
MapRecordStore.StorageAccessor<T>
Access a single record in the given data. 
 | 
class  | 
MapStore<T>
A class to answer representation queries using a map. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T> WritableDataStore<T> | 
MapRecordStore.getStorage(int col,
          Class<? super T> datatype)  | 
<T> WritableDataStore<T> | 
ArrayRecordStore.getStorage(int col,
          Class<? super T> datatype)  | 
<T> WritableDataStore<T> | 
MemoryDataStoreFactory.makeStorage(DBIDs ids,
           int hints,
           Class<? super T> dataclass)  | 
| Modifier and Type | Field and Description | 
|---|---|
protected WritableDataStore<R> | 
AbstractPreprocessorIndex.storage
The data store 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private WritableDataStore<SortedSet<DistanceResultPair<D>>> | 
MaterializeKNNAndRKNNPreprocessor.materialized_RkNN
Additional data storage for RkNN. 
 |