|
|
|||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||
| Packages that use MeanModel | |
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm-Interface. |
| de.lmu.ifi.dbs.elki.data.model | Cluster models classes for various algorithms. |
| de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
| Uses of MeanModel in de.lmu.ifi.dbs.elki.algorithm.clustering |
|---|
| Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type MeanModel | |
|---|---|
Clustering<MeanModel<V>> |
KMeans.run(Database database,
Relation<V> relation)
Run k-means |
| Uses of MeanModel in de.lmu.ifi.dbs.elki.data.model |
|---|
| Subclasses of MeanModel in de.lmu.ifi.dbs.elki.data.model | |
|---|---|
class |
EMModel<V extends FeatureVector<V,?>>
Cluster model of an EM cluster, providing a mean and a full covariance Matrix. |
class |
SubspaceModel<V extends FeatureVector<V,?>>
Model for Subspace Clusters. |
| Uses of MeanModel in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
|---|
| Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type MeanModel | |
|---|---|
(package private) Clustering<MeanModel<NV>> |
ClusterMeanVisualization.clustering
Clustering to visualize. |
| Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that return types with arguments of type MeanModel | ||
|---|---|---|
private static
|
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
private static
|
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
|
|
|||||||||||
| PREV NEXT | FRAMES NO FRAMES | |||||||||||