Uses of Class
de.lmu.ifi.dbs.elki.data.model.MeanModel

Packages that use MeanModel
de.lmu.ifi.dbs.elki.algorithm.clustering Clustering algorithms Clustering algorithms are supposed to implement the Algorithm-Interface. 
de.lmu.ifi.dbs.elki.data.model Cluster models classes for various algorithms. 
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d Visualizers based on 2D projections. 
 

Uses of MeanModel in de.lmu.ifi.dbs.elki.algorithm.clustering
 

Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type MeanModel
 Clustering<MeanModel<V>> KMeans.run(Database database, Relation<V> relation)
          Run k-means
 

Uses of MeanModel in de.lmu.ifi.dbs.elki.data.model
 

Subclasses of MeanModel in de.lmu.ifi.dbs.elki.data.model
 class EMModel<V extends FeatureVector<V,?>>
          Cluster model of an EM cluster, providing a mean and a full covariance Matrix.
 class SubspaceModel<V extends FeatureVector<V,?>>
          Model for Subspace Clusters.
 

Uses of MeanModel in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d
 

Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type MeanModel
(package private)  Clustering<MeanModel<NV>> ClusterMeanVisualization.clustering
          Clustering to visualize.
 

Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that return types with arguments of type MeanModel
private static
<NV extends NumberVector<NV,?>>
Clustering<MeanModel<NV>>
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
          Test if the given clustering has a mean model.
private static
<NV extends NumberVector<NV,?>>
Clustering<MeanModel<NV>>
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
          Test if the given clustering has a mean model.
 


Release 0.4.0 (2011-09-20_1324)