|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use MeanModel | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering | Clustering algorithms
Clustering algorithms are supposed to implement the Algorithm -Interface. |
de.lmu.ifi.dbs.elki.data.model | Cluster models classes for various algorithms. |
de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d | Visualizers based on 2D projections. |
Uses of MeanModel in de.lmu.ifi.dbs.elki.algorithm.clustering |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.clustering that return types with arguments of type MeanModel | |
---|---|
Clustering<MeanModel<V>> |
KMeans.run(Database database,
Relation<V> relation)
Run k-means |
Uses of MeanModel in de.lmu.ifi.dbs.elki.data.model |
---|
Subclasses of MeanModel in de.lmu.ifi.dbs.elki.data.model | |
---|---|
class |
EMModel<V extends FeatureVector<V,?>>
Cluster model of an EM cluster, providing a mean and a full covariance Matrix. |
class |
SubspaceModel<V extends FeatureVector<V,?>>
Model for Subspace Clusters. |
Uses of MeanModel in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d |
---|
Fields in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d with type parameters of type MeanModel | |
---|---|
(package private) Clustering<MeanModel<NV>> |
ClusterMeanVisualization.clustering
Clustering to visualize. |
Methods in de.lmu.ifi.dbs.elki.visualization.visualizers.vis2d that return types with arguments of type MeanModel | ||
---|---|---|
private static
|
ClusterMeanVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
private static
|
EMClusterVisualization.Factory.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |