Uses of Class
de.lmu.ifi.dbs.elki.algorithm.outlier.AggarwalYuEvolutionary.Individuum

Packages that use AggarwalYuEvolutionary.Individuum
de.lmu.ifi.dbs.elki.algorithm.outlier Outlier detection algorithms 
 

Uses of AggarwalYuEvolutionary.Individuum in de.lmu.ifi.dbs.elki.algorithm.outlier
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return AggarwalYuEvolutionary.Individuum
private  AggarwalYuEvolutionary.Individuum AggarwalYuEvolutionary.EvolutionarySearch.combineRecursive(ArrayList<Integer> r, int i, int[] current, AggarwalYuEvolutionary.Individuum parent1, AggarwalYuEvolutionary.Individuum parent2)
          Recursive method to build all possible gene combinations using positions in r.
private  AggarwalYuEvolutionary.Individuum AggarwalYuEvolutionary.EvolutionarySearch.makeIndividuum(int[] gene)
          Make a new individuum helper, computing sparsity=fitness
static AggarwalYuEvolutionary.Individuum AggarwalYuEvolutionary.Individuum.nullIndividuum(int dim)
          Create a "null" individuum (full space).
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return types with arguments of type AggarwalYuEvolutionary.Individuum
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.crossoverOptimized(ArrayList<AggarwalYuEvolutionary.Individuum> population)
          method implements the crossover algorithm
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.initialPopulation(int popsize)
          Produce an initial (random) population.
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.mutation(ArrayList<AggarwalYuEvolutionary.Individuum> population, double perc1, double perc2)
          method implements the mutation algorithm
private  Pair<AggarwalYuEvolutionary.Individuum,AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.recombineOptimized(AggarwalYuEvolutionary.Individuum parent1, AggarwalYuEvolutionary.Individuum parent2)
          Recombination method.
private  Pair<AggarwalYuEvolutionary.Individuum,AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.recombineOptimized(AggarwalYuEvolutionary.Individuum parent1, AggarwalYuEvolutionary.Individuum parent2)
          Recombination method.
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.rouletteRankSelection(ArrayList<AggarwalYuEvolutionary.Individuum> population)
          the selection criterion for the genetic algorithm:
roulette wheel mechanism:
where the probability of sampling an individual of the population was proportional to p - r(i), where p is the size of population and r(i) the rank of i-th individual
 Collection<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.run()
           
 

Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type AggarwalYuEvolutionary.Individuum
private  AggarwalYuEvolutionary.Individuum AggarwalYuEvolutionary.EvolutionarySearch.combineRecursive(ArrayList<Integer> r, int i, int[] current, AggarwalYuEvolutionary.Individuum parent1, AggarwalYuEvolutionary.Individuum parent2)
          Recursive method to build all possible gene combinations using positions in r.
private  Pair<AggarwalYuEvolutionary.Individuum,AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.recombineOptimized(AggarwalYuEvolutionary.Individuum parent1, AggarwalYuEvolutionary.Individuum parent2)
          Recombination method.
 

Method parameters in de.lmu.ifi.dbs.elki.algorithm.outlier with type arguments of type AggarwalYuEvolutionary.Individuum
private  boolean AggarwalYuEvolutionary.EvolutionarySearch.checkConvergence(Collection<AggarwalYuEvolutionary.Individuum> pop)
          check the termination criterion
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.crossoverOptimized(ArrayList<AggarwalYuEvolutionary.Individuum> population)
          method implements the crossover algorithm
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.mutation(ArrayList<AggarwalYuEvolutionary.Individuum> population, double perc1, double perc2)
          method implements the mutation algorithm
private  ArrayList<AggarwalYuEvolutionary.Individuum> AggarwalYuEvolutionary.EvolutionarySearch.rouletteRankSelection(ArrayList<AggarwalYuEvolutionary.Individuum> population)
          the selection criterion for the genetic algorithm:
roulette wheel mechanism:
where the probability of sampling an individual of the population was proportional to p - r(i), where p is the size of population and r(i) the rank of i-th individual
 


Release 0.4.0 (2011-09-20_1324)