|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use AggarwalYuEvolutionary.Individuum | |
---|---|
de.lmu.ifi.dbs.elki.algorithm.outlier | Outlier detection algorithms |
Uses of AggarwalYuEvolutionary.Individuum in de.lmu.ifi.dbs.elki.algorithm.outlier |
---|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return AggarwalYuEvolutionary.Individuum | |
---|---|
private AggarwalYuEvolutionary.Individuum |
AggarwalYuEvolutionary.EvolutionarySearch.combineRecursive(ArrayList<Integer> r,
int i,
int[] current,
AggarwalYuEvolutionary.Individuum parent1,
AggarwalYuEvolutionary.Individuum parent2)
Recursive method to build all possible gene combinations using positions in r. |
private AggarwalYuEvolutionary.Individuum |
AggarwalYuEvolutionary.EvolutionarySearch.makeIndividuum(int[] gene)
Make a new individuum helper, computing sparsity=fitness |
static AggarwalYuEvolutionary.Individuum |
AggarwalYuEvolutionary.Individuum.nullIndividuum(int dim)
Create a "null" individuum (full space). |
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier that return types with arguments of type AggarwalYuEvolutionary.Individuum | |
---|---|
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.crossoverOptimized(ArrayList<AggarwalYuEvolutionary.Individuum> population)
method implements the crossover algorithm |
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.initialPopulation(int popsize)
Produce an initial (random) population. |
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.mutation(ArrayList<AggarwalYuEvolutionary.Individuum> population,
double perc1,
double perc2)
method implements the mutation algorithm |
private Pair<AggarwalYuEvolutionary.Individuum,AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.recombineOptimized(AggarwalYuEvolutionary.Individuum parent1,
AggarwalYuEvolutionary.Individuum parent2)
Recombination method. |
private Pair<AggarwalYuEvolutionary.Individuum,AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.recombineOptimized(AggarwalYuEvolutionary.Individuum parent1,
AggarwalYuEvolutionary.Individuum parent2)
Recombination method. |
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.rouletteRankSelection(ArrayList<AggarwalYuEvolutionary.Individuum> population)
the selection criterion for the genetic algorithm: roulette wheel mechanism: where the probability of sampling an individual of the population was proportional to p - r(i), where p is the size of population and r(i) the rank of i-th individual |
Collection<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.run()
|
Methods in de.lmu.ifi.dbs.elki.algorithm.outlier with parameters of type AggarwalYuEvolutionary.Individuum | |
---|---|
private AggarwalYuEvolutionary.Individuum |
AggarwalYuEvolutionary.EvolutionarySearch.combineRecursive(ArrayList<Integer> r,
int i,
int[] current,
AggarwalYuEvolutionary.Individuum parent1,
AggarwalYuEvolutionary.Individuum parent2)
Recursive method to build all possible gene combinations using positions in r. |
private Pair<AggarwalYuEvolutionary.Individuum,AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.recombineOptimized(AggarwalYuEvolutionary.Individuum parent1,
AggarwalYuEvolutionary.Individuum parent2)
Recombination method. |
Method parameters in de.lmu.ifi.dbs.elki.algorithm.outlier with type arguments of type AggarwalYuEvolutionary.Individuum | |
---|---|
private boolean |
AggarwalYuEvolutionary.EvolutionarySearch.checkConvergence(Collection<AggarwalYuEvolutionary.Individuum> pop)
check the termination criterion |
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.crossoverOptimized(ArrayList<AggarwalYuEvolutionary.Individuum> population)
method implements the crossover algorithm |
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.mutation(ArrayList<AggarwalYuEvolutionary.Individuum> population,
double perc1,
double perc2)
method implements the mutation algorithm |
private ArrayList<AggarwalYuEvolutionary.Individuum> |
AggarwalYuEvolutionary.EvolutionarySearch.rouletteRankSelection(ArrayList<AggarwalYuEvolutionary.Individuum> population)
the selection criterion for the genetic algorithm: roulette wheel mechanism: where the probability of sampling an individual of the population was proportional to p - r(i), where p is the size of population and r(i) the rank of i-th individual |
|
|
|||||||||||
PREV NEXT | FRAMES NO FRAMES |