|
|
|||||||||||||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||||||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.preprocessing.ProjectedDBSCANPreprocessor<D,V>
D - Distance typeV - Vector typepublic abstract class ProjectedDBSCANPreprocessor<D extends Distance<D>,V extends FeatureVector<V,?>>
Abstract superclass for preprocessor of algorithms extending the ProjectedDBSCAN algorithm.
| Field Summary | |
|---|---|
static Class<?> |
DEFAULT_DISTANCE_FUNCTION
The default range query distance function. |
private ObjectParameter<DistanceFunction<V,D>> |
DISTANCE_FUNCTION_PARAM
Parameter distance function |
private D |
epsilon
Contains the value of parameter epsilon; |
DistanceParameter<D> |
EPSILON_PARAM
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to LocallyWeightedDistanceFunction. |
private int |
minpts
Holds the value of parameter minpts. |
private IntParameter |
MINPTS_PARAM
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
protected DistanceFunction<V,D> |
rangeQueryDistanceFunction
The distance function for the variance analysis. |
| Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debug, logger |
| Constructor Summary | |
|---|---|
protected |
ProjectedDBSCANPreprocessor(Parameterization config)
Provides a new Preprocessor that computes the correlation dimension of objects of a certain database. |
| Method Summary | |
|---|---|
void |
run(Database<V> database,
boolean verbose,
boolean time)
This method executes the particular preprocessing step of this Preprocessor for the objects of the specified database. |
protected abstract void |
runVarianceAnalysis(Integer id,
List<DistanceResultPair<D>> neighbors,
Database<V> database)
This method implements the type of variance analysis to be computed for a given point. |
| Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debugFine, debugFiner, debugFinest, exception, progress, verbose, warning |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
public final DistanceParameter<D extends Distance<D>> EPSILON_PARAM
LocallyWeightedDistanceFunction.
Key: -epsilon
private final IntParameter MINPTS_PARAM
Key: -projdbscan.minpts
public static final Class<?> DEFAULT_DISTANCE_FUNCTION
private final ObjectParameter<DistanceFunction<V extends FeatureVector<V,?>,D extends Distance<D>>> DISTANCE_FUNCTION_PARAM
private D extends Distance<D> epsilon
protected DistanceFunction<V extends FeatureVector<V,?>,D extends Distance<D>> rangeQueryDistanceFunction
private int minpts
| Constructor Detail |
|---|
protected ProjectedDBSCANPreprocessor(Parameterization config)
| Method Detail |
|---|
public void run(Database<V> database,
boolean verbose,
boolean time)
Preprocessor
run in interface Preprocessor<V extends FeatureVector<V,?>>database - the database for which the preprocessing is performedverbose - flag to allow verbose messages while performing the
algorithmtime - flag to request output of performance time
protected abstract void runVarianceAnalysis(Integer id,
List<DistanceResultPair<D>> neighbors,
Database<V> database)
id - the given pointneighbors - the neighbors as query results of the given pointdatabase - the database for which the preprocessing is performed
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||