Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN
Generalized DBSCAN is an abstraction of the original DBSCAN idea,
that allows the use of arbitrary "neighborhood" and "core point" predicates.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan.parallel |
Parallel versions of Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.logging |
Logging facility for controlling logging behavior of the complete framework.
|
de.lmu.ifi.dbs.elki.logging.progress |
Progress status objects (for UI)
|
Modifier and Type | Method and Description |
---|---|
protected int |
GriDBSCAN.Instance.expandCluster(DBIDRef seed,
int clusterid,
WritableIntegerDataStore clusterids,
ModifiableDoubleDBIDList neighbors,
ArrayModifiableDBIDs activeSet,
RangeQuery<V> rq,
FiniteProgress pprog)
Set-based expand cluster implementation.
|
protected void |
DBSCAN.expandCluster(Relation<O> relation,
RangeQuery<O> rangeQuery,
DBIDRef startObjectID,
ArrayModifiableDBIDs seeds,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster.
|
protected void |
SNNClustering.expandCluster(SimilarityQuery<O> snnInstance,
DBIDRef startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster adapted to SNN criterion.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
Modifier and Type | Method and Description |
---|---|
protected int |
GeneralizedDBSCAN.Instance.expandCluster(DBIDRef seed,
int clusterid,
WritableIntegerDataStore clusterids,
T neighbors,
ArrayModifiableDBIDs activeSet,
FiniteProgress progress)
Set-based expand cluster implementation.
|
protected int |
LSDBC.expandCluster(int clusterid,
WritableIntegerDataStore clusterids,
KNNQuery<O> knnq,
DBIDs neighbors,
double maxkdist,
FiniteProgress progress)
Set-based expand cluster implementation.
|
Modifier and Type | Field and Description |
---|---|
private FiniteProgress |
ParallelGeneralizedDBSCAN.Instance.progress
Progress logger.
|
Modifier and Type | Field and Description |
---|---|
private FiniteProgress |
AbstractHDBSCAN.HeapMSTCollector.prog
Progress, for progress logging.
|
Constructor and Description |
---|
HeapMSTCollector(DoubleLongHeap heap,
FiniteProgress prog,
Logging log)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<DendrogramModel> |
AbstractCutDendrogram.Instance.buildFlat(DBIDArrayIter it,
int split,
FiniteProgress progress)
Build a flat clustering.
|
private Clustering<DendrogramModel> |
AbstractCutDendrogram.Instance.buildHierarchical(DBIDArrayIter it,
int split,
FiniteProgress progress)
Build a hierarchical clustering.
|
private void |
AbstractCutDendrogram.Instance.buildLeafClusters(DBIDArrayIter it,
int split,
FiniteProgress progress)
Prepare the leaf clusters by executing the first (size - 1 - split)
merges.
|
Modifier and Type | Field and Description |
---|---|
(package private) FiniteProgress |
OPTICSList.Instance.progress
Progress for logging.
|
(package private) FiniteProgress |
GeneralizedOPTICS.Instance.progress
Progress for logging.
|
(package private) FiniteProgress |
OPTICSHeap.Instance.progress
Progress for logging.
|
Modifier and Type | Method and Description |
---|---|
protected void |
FastOPTICS.expandClusterOrder(DBID ipt,
ClusterOrder order,
DistanceQuery<V> dq,
FiniteProgress prog)
OPTICS algorithm for processing a point, but with different density
estimates
|
Modifier and Type | Method and Description |
---|---|
private void |
MaterializeKNNAndRKNNPreprocessor.materializeKNNAndRKNNs(ArrayDBIDs ids,
FiniteProgress progress)
Materializes the kNNs and RkNNs of the specified object IDs.
|
Modifier and Type | Method and Description |
---|---|
void |
Logging.ensureCompleted(FiniteProgress prog)
Increment a progress (unless
null ). |
Modifier and Type | Class and Description |
---|---|
class |
StepProgress
This progress class is used for multi-step processing.
|
Copyright © 2019 ELKI Development Team. License information.