Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms
Clustering algorithms are supposed to implement the
Algorithm -Interface. |
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN
Generalized DBSCAN is an abstraction of the original DBSCAN idea,
that allows the use of arbitrary "neighborhood" and "core point" predicates.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods
Methods that detect outliers in subspaces (projections) of the data set.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions
|
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.database.query.range |
Prepared queries for ε-range queries, that return all objects within
the radius ε
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results
|
de.lmu.ifi.dbs.elki.evaluation.scores |
Evaluation of rankings and scorings
|
de.lmu.ifi.dbs.elki.index.distancematrix |
Precomputed distance matrix.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data
|
de.lmu.ifi.dbs.elki.index.tree.metrical.covertree |
Cover-tree variations.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees |
Metrical index structures based on the concepts of the M-Tree
supporting processing of reverse k nearest neighbor queries by
using the k-nn distances of the entries
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
Classes for performing queries (knn, range, ...) on metrical trees
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | |
de.lmu.ifi.dbs.elki.math.linearalgebra.pca |
Principal Component Analysis (PCA) and Eigenvector processing
|
Modifier and Type | Method and Description |
---|---|
protected int |
GriDBSCAN.Instance.processCorePoint(DBIDRef seed,
DoubleDBIDList newneighbors,
int clusterid,
WritableIntegerDataStore clusterids,
ArrayModifiableDBIDs activeSet)
Process a single core point.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
EpsilonNeighborPredicate.Instance.getNeighbors(DBIDRef reference) |
DoubleDBIDList |
SimilarityNeighborPredicate.Instance.getNeighbors(DBIDRef reference) |
Modifier and Type | Method and Description |
---|---|
SimpleTypeInformation<DoubleDBIDList> |
EpsilonNeighborPredicate.getOutputType() |
SimpleTypeInformation<DoubleDBIDList> |
SimilarityNeighborPredicate.getOutputType() |
Modifier and Type | Method and Description |
---|---|
protected abstract M |
AbstractRangeQueryNeighborPredicate.computeLocalModel(DBIDRef id,
DoubleDBIDList neighbors,
Relation<O> relation)
Method to compute the actual data model.
|
protected COPACNeighborPredicate.COPACModel |
COPACNeighborPredicate.computeLocalModel(DBIDRef id,
DoubleDBIDList knnneighbors,
Relation<V> relation)
COPAC model computation
|
protected PreDeConNeighborPredicate.PreDeConModel |
PreDeConNeighborPredicate.computeLocalModel(DBIDRef id,
DoubleDBIDList neighbors,
Relation<V> relation) |
protected PreDeConNeighborPredicate.PreDeConModel |
FourCNeighborPredicate.computeLocalModel(DBIDRef id,
DoubleDBIDList neighbors,
Relation<V> relation) |
DBIDIter |
EpsilonNeighborPredicate.Instance.iterDBIDs(DoubleDBIDList neighbors) |
DBIDIter |
SimilarityNeighborPredicate.Instance.iterDBIDs(DoubleDBIDList neighbors) |
Modifier and Type | Method and Description |
---|---|
protected DoubleDBIDList |
ReferenceBasedOutlierDetection.computeDistanceVector(NumberVector refPoint,
Relation<? extends NumberVector> database,
PrimitiveDistanceQuery<? super NumberVector> distFunc)
Computes for each object the distance to one reference point.
|
Modifier and Type | Method and Description |
---|---|
protected double |
ReferenceBasedOutlierDetection.computeDensity(DoubleDBIDList referenceDists,
DoubleDBIDListIter iter,
int index)
Computes the density of an object.
|
protected void |
ReferenceBasedOutlierDetection.updateDensities(WritableDoubleDataStore rbod_score,
DoubleDBIDList referenceDists)
Update the density estimates for each object.
|
Modifier and Type | Method and Description |
---|---|
private ArrayModifiableDBIDs |
OnlineLOF.LOFKNNListener.mergeIDs(java.util.List<? extends DoubleDBIDList> queryResults,
DBIDs... ids)
Merges the ids of the query result with the specified ids.
|
Modifier and Type | Method and Description |
---|---|
private DoubleDBIDList |
OUTRES.initialRange(DBIDRef obj,
DBIDs cands,
PrimitiveDistanceFunction<? super NumberVector> df,
double eps,
OUTRES.KernelDensityEstimator kernel,
ModifiableDoubleDBIDList n)
Initial range query.
|
private DoubleDBIDList |
OUTRES.subsetNeighborhoodQuery(DoubleDBIDList neighc,
DBIDRef dbid,
PrimitiveDistanceFunction<? super NumberVector> df,
double adjustedEps,
OUTRES.KernelDensityEstimator kernel,
ModifiableDoubleDBIDList n)
Refine neighbors within a subset.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
OUTRES.relevantSubspace(long[] subspace,
DoubleDBIDList neigh,
OUTRES.KernelDensityEstimator kernel)
Subspace relevance test.
|
private DoubleDBIDList |
OUTRES.subsetNeighborhoodQuery(DoubleDBIDList neighc,
DBIDRef dbid,
PrimitiveDistanceFunction<? super NumberVector> df,
double adjustedEps,
OUTRES.KernelDensityEstimator kernel,
ModifiableDoubleDBIDList n)
Refine neighbors within a subset.
|
protected double |
OUTRES.KernelDensityEstimator.subspaceDensity(long[] subspace,
DoubleDBIDList neighbors)
Compute density in the given subspace.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<DoubleDBIDList> |
TypeUtil.NEIGHBORLIST
A list of neighbors.
|
Modifier and Type | Interface and Description |
---|---|
interface |
KNNList
Interface for kNN results.
|
interface |
ModifiableDoubleDBIDList
Modifiable API for Distance-DBID results
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
DoubleDBIDList.slice(int begin,
int end)
Get a subset list.
|
Modifier and Type | Interface and Description |
---|---|
(package private) interface |
DoubleIntegerDBIDList
Interface to store double distance, integer DBID results.
|
interface |
IntegerDBIDKNNList
Combination interface for KNNList and IntegerDBIDs.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
DoubleIntegerDBIDArrayList
Class to store double distance, integer DBID results.
|
(package private) class |
DoubleIntegerDBIDKNNList
kNN list, but without automatic sorting.
|
class |
DoubleIntegerDBIDSubList
Sublist of an existing result to contain only some of the elements.
|
class |
IntegerDBIDKNNSubList
Sublist of an existing result to contain only the first k elements.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
RangeQuery.getRangeForDBID(DBIDRef id,
double range)
Get the neighbors for a particular id in a given query range
|
DoubleDBIDList |
LinearScanDistanceRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
LinearScanEuclideanDistanceRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
AbstractSimilarityRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
LinearScanSimilarityRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
AbstractDistanceRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
LinearScanPrimitiveSimilarityRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
LinearScanPrimitiveDistanceRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
RangeQuery.getRangeForObject(O obj,
double range)
Get the neighbors for a particular object in a given query range
|
DoubleDBIDList |
LinearScanDistanceRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
LinearScanEuclideanDistanceRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
AbstractSimilarityRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
LinearScanSimilarityRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
AbstractDistanceRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
LinearScanPrimitiveSimilarityRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
LinearScanPrimitiveDistanceRangeQuery.getRangeForObject(O obj,
double range) |
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
RKNNQuery.getRKNNForDBID(DBIDRef id,
int k)
Get the reverse k nearest neighbors for a particular id.
|
DoubleDBIDList |
LinearScanRKNNQuery.getRKNNForDBID(DBIDRef id,
int k) |
abstract DoubleDBIDList |
AbstractRKNNQuery.getRKNNForDBID(DBIDRef id,
int k) |
DoubleDBIDList |
PreprocessorRKNNQuery.getRKNNForDBID(DBIDRef id,
int k) |
DoubleDBIDList |
RKNNQuery.getRKNNForObject(O obj,
int k)
Get the reverse k nearest neighbors for a particular object.
|
DoubleDBIDList |
LinearScanRKNNQuery.getRKNNForObject(O obj,
int k) |
DoubleDBIDList |
PreprocessorRKNNQuery.getRKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
java.util.List<? extends DoubleDBIDList> |
RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method for reverse k nearest neighbors for ids.
|
java.util.List<? extends DoubleDBIDList> |
LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
java.util.List<? extends DoubleDBIDList> |
PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
static double |
EvaluateClustering.evaluateRanking(ScoreEvaluation eval,
Cluster<?> clus,
DoubleDBIDList ranking)
Evaluate given a cluster (of positive elements) and a scoring list.
|
Modifier and Type | Method and Description |
---|---|
default double |
ScoreEvaluation.evaluate(DBIDs ids,
DoubleDBIDList nei)
Evaluate given a list of positives and a scoring.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
PrecomputedSimilarityMatrix.PrecomputedSimilarityRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
PrecomputedDistanceMatrix.PrecomputedRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
PrecomputedSimilarityMatrix.PrecomputedSimilarityRangeQuery.getRangeForObject(O obj,
double range) |
DoubleDBIDList |
PrecomputedDistanceMatrix.PrecomputedRangeQuery.getRangeForObject(O obj,
double range) |
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
MaterializeKNNAndRKNNPreprocessor.getRKNN(DBIDRef id)
Returns the materialized RkNNs of the specified id.
|
Modifier and Type | Method and Description |
---|---|
protected abstract DoubleDBIDList |
AbstractFilteredPCAIndex.objectsForPCA(DBIDRef id)
Returns the objects to be considered within the PCA for the specified query
object.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
ProjectedIndex.ProjectedRKNNQuery.getRKNNForDBID(DBIDRef id,
int k) |
DoubleDBIDList |
ProjectedIndex.ProjectedRKNNQuery.getRKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
java.util.List<? extends DoubleDBIDList> |
ProjectedIndex.ProjectedRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
protected double |
AbstractCoverTree.maxDistance(DoubleDBIDList elems)
Find maximum in a list via scanning.
|
Constructor and Description |
---|
Node(DBIDRef r,
double maxDist,
DoubleDBIDList singletons)
Constructor for leaf node.
|
Node(DBIDRef r,
double maxDist,
double parentDist,
DoubleDBIDList singletons)
Constructor for leaf node.
|
Modifier and Type | Method and Description |
---|---|
abstract DoubleDBIDList |
AbstractMkTree.reverseKNNQuery(DBIDRef id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
MkAppTree.reverseKNNQuery(DBIDRef id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
MkCoPTree.reverseKNNQuery(DBIDRef id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
MkMaxTree.reverseKNNQuery(DBIDRef id,
int k)
Performs a reverse k-nearest neighbor query for the given object ID.
|
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
MkTabTree.reverseKNNQuery(DBIDRef id,
int k) |
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
MkTreeRKNNQuery.getRKNNForDBID(DBIDRef id,
int k) |
DoubleDBIDList |
MkTreeRKNNQuery.getRKNNForObject(O obj,
int k) |
Modifier and Type | Method and Description |
---|---|
java.util.List<? extends DoubleDBIDList> |
MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
RStarTreeRangeQuery.getRangeForDBID(DBIDRef id,
double range) |
DoubleDBIDList |
RStarTreeRangeQuery.getRangeForObject(O obj,
double range) |
Modifier and Type | Method and Description |
---|---|
DoubleDBIDList |
RdKNNTree.reverseKNNQuery(DBID oid,
int k,
SpatialPrimitiveDistanceFunction<? super O> distanceFunction,
KNNQuery<O> knnQuery) |
Modifier and Type | Method and Description |
---|---|
private void |
AutotuningPCA.assertSortedByDistance(DoubleDBIDList results)
Ensure that the results are sorted by distance.
|
PCAResult |
AutotuningPCA.processQueryResult(DoubleDBIDList results,
Relation<? extends NumberVector> database) |
PCAResult |
PCARunner.processQueryResult(DoubleDBIDList results,
Relation<? extends NumberVector> database)
Run PCA on a QueryResult Collection.
|
default double[][] |
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database)
Compute Covariance Matrix for a QueryResult Collection.
|
double[][] |
WeightedCovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
default double[][] |
CovarianceMatrixBuilder.processQueryResults(DoubleDBIDList results,
Relation<? extends NumberVector> database,
int k)
Compute Covariance Matrix for a QueryResult Collection.
|
Copyright © 2019 ELKI Development Team. License information.