Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
DiagonalGaussianModel
Simpler model for a single Gaussian cluster, without covariances.
|
class |
MultivariateGaussianModel
Model for a single Gaussian cluster.
|
class |
SphericalGaussianModel
Simple spherical Gaussian cluster.
|
class |
TextbookMultivariateGaussianModel
Numerically problematic implementation of the GMM model, using the textbook
algorithm.
|
class |
TwoPassMultivariateGaussianModel
Model for a single Gaussian cluster, using two-passes for slightly better
numerics.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<? extends EMClusterModel<M>> |
EMClusterModelFactory.buildInitialModels(Database database,
Relation<V> relation,
int k,
NumberVectorDistanceFunction<? super V> df)
Build the initial models
|
Modifier and Type | Method and Description |
---|---|
static double |
EM.assignProbabilitiesToInstances(Relation<? extends NumberVector> relation,
java.util.List<? extends EMClusterModel<?>> models,
WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
compute the expectation value of the current mixture of distributions.
|
static void |
EM.recomputeCovarianceMatrices(Relation<? extends NumberVector> relation,
WritableDataStore<double[]> probClusterIGivenX,
java.util.List<? extends EMClusterModel<?>> models,
double prior)
Recompute the covariance matrixes.
|
Copyright © 2019 ELKI Development Team. License information.