| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering | 
 Biclustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | 
 Correlation clustering algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction | 
 Extraction of partitional clusterings from hierarchical results. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization | 
 Initialization strategies for k-means. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.quality | 
 Quality measures for k-Means results. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.subspace | 
 Axis-parallel subspace clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.data | 
 Basic classes for different data types, database object types and label types. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster | 
 Similarity measures for comparing clusters. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering.internal | 
 Internal evaluation measures for clusterings. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering.pairsegments | 
 Pair-segment analysis of multiple clusterings. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.scores | 
 Evaluation of rankings and scorings. 
 | 
| de.lmu.ifi.dbs.elki.result | 
 Result types, representation and handling 
 | 
| de.lmu.ifi.dbs.elki.result.textwriter | 
 Text serialization (CSV, Gnuplot, Console, ...) 
 | 
| de.lmu.ifi.dbs.elki.result.textwriter.naming | 
 Naming schemes for clusters (for output when an algorithm doesn't generate cluster names). 
 | 
| de.lmu.ifi.dbs.elki.visualization.style | 
 Style management for ELKI visualizations. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.optics | 
 Visualizers that do work on OPTICS plots 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster | 
 Visualizers for clustering results based on 2D projections. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj | 
 Visualizers that do not use a particular projection. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected Cluster<BiclusterModel> | 
AbstractBiclustering.defineBicluster(BitSet rows,
               BitSet cols)
Defines a Bicluster as given by the included rows and columns. 
 | 
protected Cluster<BiclusterModel> | 
AbstractBiclustering.defineBicluster(long[] rows,
               long[] cols)
Defines a Bicluster as given by the included rows and columns. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private List<List<Cluster<CorrelationModel<V>>>> | 
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
                          Relation<V> database,
                          int dimensionality,
                          ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
 returns a mapping of correlation dimension to maps of clusters within this
 correlation dimension. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private boolean | 
ERiC.isParent(ERiCNeighborPredicate.Instance npred,
        Cluster<CorrelationModel<V>> parent,
        Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
 the children clusters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
ERiC.buildHierarchy(Clustering<CorrelationModel<V>> clustering,
              List<List<Cluster<CorrelationModel<V>>>> clusterMap,
              ERiCNeighborPredicate.Instance npred)  | 
private boolean | 
ERiC.isParent(ERiCNeighborPredicate.Instance npred,
        Cluster<CorrelationModel<V>> parent,
        Hierarchy.Iter<Cluster<CorrelationModel<V>>> iter)
Returns true, if the specified parent cluster is a parent of one child of
 the children clusters. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Collection<Cluster<DendrogramModel>> | 
SimplifiedHierarchyExtraction.TempCluster.children
(Finished) child clusters 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Cluster<DendrogramModel> | 
ExtractFlatClusteringFromHierarchy.makeCluster(DBIDRef lead,
           double depth,
           DBIDs members)
Make the cluster for the given object 
 | 
private Cluster<DendrogramModel> | 
SimplifiedHierarchyExtraction.makeSingletonCluster(DBIDRef lead,
                    double depth)
Make the cluster for the given object 
 | 
private Cluster<DendrogramModel> | 
SimplifiedHierarchyExtraction.TempCluster.toCluster(Clustering<DendrogramModel> clustering,
         DBIDRef lead)
Make the cluster for the given object 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
SimplifiedHierarchyExtraction.TempCluster.addChild(Cluster<DendrogramModel> clu)
Add a child cluster. 
 | 
private void | 
HDBSCANHierarchyExtraction.TempCluster.collectChildren(Clustering<DendrogramModel> clustering,
               HDBSCANHierarchyExtraction.TempCluster cur,
               Cluster<DendrogramModel> clus,
               boolean flatten,
               boolean hierarchical)
Recursive flattening of clusters. 
 | 
private void | 
HDBSCANHierarchyExtraction.TempCluster.finalizeCluster(Clustering<DendrogramModel> clustering,
               Cluster<DendrogramModel> parent,
               boolean flatten,
               boolean hierarchical)
Make the cluster for the given object 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected List<Cluster<M>> | 
XMeans.splitCluster(Cluster<M> parentCluster,
            Database database,
            Relation<V> relation)
Conditionally splits the clusters based on the information criterion. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected List<? extends NumberVector> | 
XMeans.splitCentroid(Cluster<? extends MeanModel> parentCluster,
             Relation<V> relation)
Split an existing centroid into two initial centers. 
 | 
protected List<Cluster<M>> | 
XMeans.splitCluster(Cluster<M> parentCluster,
            Database database,
            Relation<V> relation)
Conditionally splits the clusters based on the information criterion. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
PredefinedInitialMeans.setInitialClusters(List<? extends Cluster<? extends MeanModel>> initialMeans)
Set the initial means. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends NumberVector>  | 
AbstractKMeansQualityMeasure.varianceOfCluster(Cluster<? extends MeanModel> cluster,
                 NumberVectorDistanceFunction<? super V> distanceFunction,
                 Relation<V> relation)
Variance contribution of a single cluster. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Cluster<SubspaceModel> | 
DOC.makeCluster(Relation<V> relation,
           DBIDs C,
           long[] D)
Utility method to create a subspace cluster from a list of DBIDs and the
 relevant attributes. 
 | 
private Cluster<SubspaceModel> | 
DOC.runDOC(Database database,
      Relation<V> relation,
      ArrayModifiableDBIDs S,
      int d,
      int n,
      int m,
      int r,
      int minClusterSize)
Performs a single run of DOC, finding a single cluster. 
 | 
private Cluster<SubspaceModel> | 
DOC.runFastDOC(Database database,
          Relation<V> relation,
          ArrayModifiableDBIDs S,
          int d,
          int n,
          int m,
          int r)
Performs a single run of FastDOC, finding a single cluster. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private List<Cluster<Model>> | 
SUBCLU.runDBSCAN(Relation<V> relation,
         DBIDs ids,
         Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
 given subspace. 
 | 
private List<Cluster<SubspaceModel>> | 
DiSH.sortClusters(Relation<V> relation,
            TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
 descending order. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private boolean | 
DiSH.isParent(Relation<V> relation,
        Cluster<SubspaceModel> parent,
        Hierarchy.Iter<Cluster<SubspaceModel>> iter,
        int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
 the children clusters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Subspace | 
SUBCLU.bestSubspace(List<Subspace> subspaces,
            Subspace candidate,
            TreeMap<Subspace,List<Cluster<Model>>> clusterMap)
Determines the  
d-dimensional subspace of the (d+1)
 -dimensional candidate with minimal number of objects in the cluster. | 
private void | 
DiSH.buildHierarchy(Relation<V> database,
              Clustering<SubspaceModel> clustering,
              List<Cluster<SubspaceModel>> clusters,
              int dimensionality)
Builds the cluster hierarchy. 
 | 
private boolean | 
DiSH.isParent(Relation<V> relation,
        Cluster<SubspaceModel> parent,
        Hierarchy.Iter<Cluster<SubspaceModel>> iter,
        int db_dim)
Returns true, if the specified parent cluster is a parent of one child of
 the children clusters. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
static Comparator<Cluster<?>> | 
Cluster.BY_NAME_SORTER
A partial comparator for Clusters, based on their name. 
 | 
private ModifiableHierarchy<Cluster<M>> | 
Clustering.hierarchy
Cluster hierarchy. 
 | 
private List<Cluster<M>> | 
Clustering.toplevelclusters
Keep a list of top level clusters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
List<Cluster<M>> | 
Clustering.getAllClusters()
Collect all clusters (recursively) into a List. 
 | 
Hierarchy<Cluster<M>> | 
Clustering.getClusterHierarchy()
Get the cluster hierarchy. 
 | 
List<Cluster<M>> | 
Clustering.getToplevelClusters()
Return top level clusters 
 | 
Hierarchy.Iter<Cluster<M>> | 
Clustering.iterToplevelClusters()
Iterate over the top level clusters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
Clustering.addChildCluster(Cluster<M> parent,
               Cluster<M> child)
Add a cluster to the clustering. 
 | 
void | 
Clustering.addChildCluster(Cluster<M> parent,
               Cluster<M> child)
Add a cluster to the clustering. 
 | 
void | 
Clustering.addToplevelCluster(Cluster<M> clus)
Add a cluster to the clustering. 
 | 
| Constructor and Description | 
|---|
Clustering(String name,
          String shortname,
          List<Cluster<M>> toplevelclusters)
Constructor with a list of top level clusters 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<T extends Cluster<?>>  | 
ClusterJaccardSimilarityFunction.instantiate(Relation<T> relation)  | 
<T extends Cluster<?>>  | 
ClusterIntersectionSimilarityFunction.instantiate(Relation<T> relation)  | 
| Modifier and Type | Method and Description | 
|---|---|
SimpleTypeInformation<? super Cluster<?>> | 
ClusterJaccardSimilarityFunction.getInputTypeRestriction()  | 
SimpleTypeInformation<? super Cluster<?>> | 
ClusterIntersectionSimilarityFunction.getInputTypeRestriction()  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
ClusterJaccardSimilarityFunction.distance(Cluster<?> o1,
        Cluster<?> o2)  | 
double | 
ClusterJaccardSimilarityFunction.distance(Cluster<?> o1,
        Cluster<?> o2)  | 
double | 
ClusterIntersectionSimilarityFunction.distance(Cluster<?> o1,
        Cluster<?> o2)  | 
double | 
ClusterIntersectionSimilarityFunction.distance(Cluster<?> o1,
        Cluster<?> o2)  | 
double | 
ClusterJaccardSimilarityFunction.similarity(Cluster<?> o1,
          Cluster<?> o2)  | 
double | 
ClusterJaccardSimilarityFunction.similarity(Cluster<?> o1,
          Cluster<?> o2)  | 
double | 
ClusterIntersectionSimilarityFunction.similarity(Cluster<?> o1,
          Cluster<?> o2)  | 
double | 
ClusterIntersectionSimilarityFunction.similarity(Cluster<?> o1,
          Cluster<?> o2)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected double | 
EvaluateCIndex.processCluster(Cluster<?> cluster,
              List<? extends Cluster<?>> clusters,
              int i,
              DistanceQuery<O> dq,
              DoubleHeap maxDists,
              DoubleHeap minDists,
              int w)  | 
protected void | 
EvaluateCIndex.processSingleton(Cluster<?> cluster,
                Relation<? extends O> rel,
                DistanceQuery<O> dq,
                DoubleHeap maxDists,
                DoubleHeap minDists,
                int w)  | 
| Modifier and Type | Method and Description | 
|---|---|
static int | 
EvaluateSimplifiedSilhouette.centroids(Relation<? extends NumberVector> rel,
         List<? extends Cluster<?>> clusters,
         NumberVector[] centroids,
         NoiseHandling noiseOption)
Compute centroids. 
 | 
protected double[] | 
EvaluateConcordantPairs.computeWithinDistances(Relation<? extends NumberVector> rel,
                      List<? extends Cluster<?>> clusters,
                      int withinPairs)  | 
static int | 
EvaluateVarianceRatioCriteria.globalCentroid(Centroid overallCentroid,
              Relation<? extends NumberVector> rel,
              List<? extends Cluster<?>> clusters,
              NumberVector[] centroids,
              NoiseHandling noiseOption)
Update the global centroid. 
 | 
protected double | 
EvaluateCIndex.processCluster(Cluster<?> cluster,
              List<? extends Cluster<?>> clusters,
              int i,
              DistanceQuery<O> dq,
              DoubleHeap maxDists,
              DoubleHeap minDists,
              int w)  | 
double[] | 
EvaluateDaviesBouldin.withinGroupDistances(Relation<? extends NumberVector> rel,
                    List<? extends Cluster<?>> clusters,
                    NumberVector[] centroids)  | 
| Modifier and Type | Field and Description | 
|---|---|
private List<List<? extends Cluster<?>>> | 
Segments.clusters
Clusters 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs)  | 
private void | 
Segments.recursivelyFill(List<List<? extends Cluster<?>>> cs,
               int depth,
               SetDBIDs first,
               SetDBIDs second,
               int[] path,
               boolean objectsegment)  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
ScoreEvaluation.evaluate(Cluster<?> clus,
        DoubleDBIDList nei)
Evaluate given a cluster (of positive elements) and a scoring list. 
 | 
double | 
AbstractScoreEvaluation.evaluate(Cluster<?> clus,
        DoubleDBIDList nei)  | 
| Modifier and Type | Method and Description | 
|---|---|
private DoubleObjPair<Polygon> | 
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
                     Hierarchy<Cluster<Model>> hier,
                     Map<Object,DoubleObjPair<Polygon>> hulls,
                     Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls. 
 | 
private StringBuilder | 
KMLOutputHandler.makeDescription(Cluster<?> c)
Make an HTML description. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private DoubleObjPair<Polygon> | 
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
                     Hierarchy<Cluster<Model>> hier,
                     Map<Object,DoubleObjPair<Polygon>> hulls,
                     Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
TextWriter.writeClusterResult(Database db,
                  StreamFactory streamOpener,
                  Clustering<Model> clustering,
                  Cluster<Model> clus,
                  List<Relation<?>> ra,
                  NamingScheme naming)  | 
| Modifier and Type | Field and Description | 
|---|---|
private Map<Cluster<?>,String> | 
SimpleEnumeratingScheme.names
Assigned cluster names. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
String | 
SimpleEnumeratingScheme.getNameFor(Cluster<?> cluster)
Retrieve the cluster name. 
 | 
String | 
NamingScheme.getNameFor(Cluster<?> cluster)
Retrieve a name for the given cluster. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) TObjectIntMap<Cluster<?>> | 
ClusterStylingPolicy.cmap
Map from cluster objects to color offsets. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
int | 
ClusterStylingPolicy.getStyleForCluster(Cluster<?> c)
Get the style number for a cluster. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
            Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
            int depth,
            Map<Cluster<?>,String> colormap)
Recursively draw clusters 
 | 
private void | 
OPTICSClusterVisualization.Instance.drawClusters(Clustering<OPTICSModel> clustering,
            Hierarchy.Iter<Cluster<OPTICSModel>> clusters,
            int depth,
            Map<Cluster<?>,String> colormap)
Recursively draw clusters 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
              Hierarchy<Cluster<Model>> hier,
              Cluster<Model> clus)
Recursively add a cluster and its children. 
 | 
private DoubleObjPair<Polygon> | 
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
                     Hierarchy<Cluster<Model>> hier,
                     Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
              Hierarchy<Cluster<Model>> hier,
              Cluster<Model> clus)
Recursively add a cluster and its children. 
 | 
private DoubleObjPair<Polygon> | 
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
                     Hierarchy<Cluster<Model>> hier,
                     Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
             MarkerLibrary ml,
             DoubleDoublePair size,
             DoubleDoublePair pos,
             int depth,
             Cluster<Model> cluster,
             TObjectIntMap<Cluster<Model>> cnum,
             Hierarchy<Cluster<Model>> hier)  | 
private static <M extends Model>  | 
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
         Cluster<M> cluster,
         int[] size)
Recursive depth computation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
             MarkerLibrary ml,
             DoubleDoublePair size,
             DoubleDoublePair pos,
             int depth,
             Cluster<Model> cluster,
             TObjectIntMap<Cluster<Model>> cnum,
             Hierarchy<Cluster<Model>> hier)  | 
private double | 
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
             MarkerLibrary ml,
             DoubleDoublePair size,
             DoubleDoublePair pos,
             int depth,
             Cluster<Model> cluster,
             TObjectIntMap<Cluster<Model>> cnum,
             Hierarchy<Cluster<Model>> hier)  | 
private static <M extends Model>  | 
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
         Cluster<M> cluster,
         int[] size)
Recursive depth computation. 
 | 
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.