Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.anglebased |
Angle-based outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise |
Normalizations operating on columns / variates; where each column is treated independently.
|
de.lmu.ifi.dbs.elki.datasource.filter.transform |
Data space transformations.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.math.statistics.dependence |
Statistical measures of dependence, such as correlation.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator |
Estimators for statistical distributions.
|
de.lmu.ifi.dbs.elki.math.statistics.tests |
Statistical tests.
|
de.lmu.ifi.dbs.elki.parallel.processor |
Processor API of ELKI, and some essential shared processors.
|
de.lmu.ifi.dbs.elki.utilities.datastructures.histogram |
Classes for computing histograms.
|
de.lmu.ifi.dbs.elki.utilities.scaling |
Scaling functions: linear, logarithmic, gamma, clipping, ...
|
Class and Description |
---|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
Class and Description |
---|
Mean
Compute the mean using a numerically stable online algorithm.
|
Class and Description |
---|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
Class and Description |
---|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
Class and Description |
---|
MeanVarianceMinMax
Class collecting mean, variance, minimum and maximum statistics.
|
Class and Description |
---|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
Class and Description |
---|
Mean
Compute the mean using a numerically stable online algorithm.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
IntegerMinMax
Class to find the minimum and maximum int values in data.
|
Mean
Compute the mean using a numerically stable online algorithm.
|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
MeanVarianceMinMax
Class collecting mean, variance, minimum and maximum statistics.
|
SinCosTable
Class to precompute / cache Sinus and Cosinus values.
|
StatisticalMoments
Track various statistical moments, including mean, variance, skewness and
kurtosis.
|
Class and Description |
---|
Mean
Compute the mean using a numerically stable online algorithm.
|
SinCosTable
Class to precompute / cache Sinus and Cosinus values.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
Class and Description |
---|
SinCosTable
Class to precompute / cache Sinus and Cosinus values.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
StatisticalMoments
Track various statistical moments, including mean, variance, skewness and
kurtosis.
|
Class and Description |
---|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
Class and Description |
---|
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
algorithm.
|
Class and Description |
---|
DoubleMinMax
Class to find the minimum and maximum double values in data.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.