Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.cash |
Helper classes for the
CASH algorithm. |
de.lmu.ifi.dbs.elki.algorithm.clustering.em |
Expectation-Maximization clustering algorithm.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization |
Initialization strategies for k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.subspace |
Subspace outlier detection methods.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.spatial |
Spatial data types - interfaces and utilities.
|
de.lmu.ifi.dbs.elki.data.synthetic.bymodel |
Generator using a distribution model specified in an XML configuration file.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource |
Data normalization (and reconstitution) of data sets.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.index.tree.spatial |
Tree-based index structures for spatial indexing.
|
de.lmu.ifi.dbs.elki.math |
Mathematical operations and utilities used throughout the framework.
|
de.lmu.ifi.dbs.elki.math.geometry |
Algorithms from computational geometry.
|
de.lmu.ifi.dbs.elki.math.linearalgebra |
Linear Algebra package provides classes and computational methods for operations on matrices.
|
de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections |
Random projection families.
|
de.lmu.ifi.dbs.elki.math.statistics |
Statistical tests and methods.
|
de.lmu.ifi.dbs.elki.result.textwriter.writers |
Serialization handlers for individual data types.
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters |
Classes for various typed parameters.
|
de.lmu.ifi.dbs.elki.visualization.projections |
Visualization projections
|
de.lmu.ifi.dbs.elki.visualization.svg |
Base SVG functionality (generation, markers, thumbnails, export, ...).
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier |
Visualizers for outlier scores based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection |
Visualizers for object selection based on 2D projections.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Method and Description |
---|---|
CorrelationAnalysisSolution<V> |
DependencyDerivator.generateModel(Relation<V> db,
DBIDs ids,
Vector centroid)
Runs the pca on the given set of IDs and for the given centroid.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
LMCLUS.Separation.originV
Origin vector
|
Modifier and Type | Method and Description |
---|---|
private void |
HiCO.adjust(Matrix v,
Matrix e_czech,
Vector vector,
int corrDim)
Inserts the specified vector into the given orthonormal matrix
v at column corrDim . |
private double |
LMCLUS.deviation(Vector delta,
Matrix beta)
Deviation from a manifold described by beta.
|
Modifier and Type | Method and Description |
---|---|
private Matrix |
LMCLUS.generateOrthonormalBasis(List<Vector> vectors)
This Method generates an orthonormal basis from a set of Vectors.
|
Modifier and Type | Method and Description |
---|---|
Vector |
ParameterizationFunction.getColumnVector()
Get the actual vector used.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
MultivariateGaussianModel.mean
Mean vector.
|
(package private) Vector |
DiagonalGaussianModel.mean
Mean vector.
|
(package private) Vector |
SphericalGaussianModel.mean
Mean vector.
|
Modifier and Type | Method and Description |
---|---|
double |
MultivariateGaussianModel.mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
DiagonalGaussianModel.mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
double |
SphericalGaussianModel.mahalanobisDistance(Vector vec)
Compute the Mahalanobis distance from the centroid for a given vector.
|
Constructor and Description |
---|
DiagonalGaussianModel(double weight,
Vector mean)
Constructor.
|
DiagonalGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
MultivariateGaussianModel(double weight,
Vector mean)
Constructor.
|
MultivariateGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
SphericalGaussianModel(double weight,
Vector mean)
Constructor.
|
SphericalGaussianModel(double weight,
Vector mean,
double norm)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
AbstractKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database.
|
protected List<Vector> |
AbstractKMeans.medians(List<? extends ModifiableDBIDs> clusters,
List<Vector> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractKMeans.incrementalUpdateMean(Vector mean,
V vec,
int newsize,
double op)
Compute an incremental update for the mean.
|
Modifier and Type | Method and Description |
---|---|
private int |
KMeansElkan.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
double[][] cdist,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
double[][] cdist,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
protected boolean |
AbstractKMeans.macQueenIterate(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Perform a MacQueen style iteration.
|
private double |
KMeansHamerly.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
private double |
KMeansHamerly.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
private double |
KMeansElkan.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
private double |
KMeansElkan.maxMoved(List<Vector> means,
List<Vector> newmeans,
double[] dists)
Maximum distance moved.
|
protected List<Vector> |
AbstractKMeans.medians(List<? extends ModifiableDBIDs> clusters,
List<Vector> medians,
Relation<V> database)
Returns the median vectors of the given clusters in the given database.
|
private void |
KMeansHamerly.recomputeSeperation(List<Vector> means,
double[] sep)
Recompute the separation of cluster means.
|
private void |
KMeansElkan.recomputeSeperation(List<Vector> means,
double[] sep,
double[][] cdist)
Recompute the separation of cluster means.
|
private boolean |
AbstractKMeans.updateMeanAndAssignment(List<ModifiableDBIDs> clusters,
List<Vector> means,
int minIndex,
V fv,
DBIDIter iditer,
WritableIntegerDataStore assignment)
Try to update the cluster assignment.
|
protected void |
KMeansBatchedLloyd.updateMeans(List<Vector> means,
double[][] meanshift,
List<ModifiableDBIDs> clusters,
int[] changesize)
Merge changes into mean vectors.
|
Modifier and Type | Field and Description |
---|---|
protected List<Vector> |
PredefinedInitialMeans.Parameterizer.initialMeans
Initial means.
|
Modifier and Type | Field and Description |
---|---|
private Vector[] |
KMeansProcessor.Instance.means
Current mean vectors.
|
Modifier and Type | Field and Description |
---|---|
(package private) List<Vector> |
KMeansProcessor.means
Mean vectors.
|
Modifier and Type | Method and Description |
---|---|
List<Vector> |
KMeansProcessor.getMeans()
Get the new means.
|
Modifier and Type | Method and Description |
---|---|
void |
KMeansProcessor.nextIteration(List<Vector> means)
Initialize for a new iteration.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
PROCLUS.PROCLUSCluster.centroid
The centroids of this cluster along each dimension.
|
Modifier and Type | Method and Description |
---|---|
private List<Pair<Vector,long[]>> |
PROCLUS.findDimensions(ArrayList<PROCLUS.PROCLUSCluster> clusters,
Relation<V> database)
Refinement step that determines the set of correlated dimensions for each
cluster centroid.
|
Modifier and Type | Method and Description |
---|---|
private double |
PROCLUS.avgDistance(Vector centroid,
DBIDs objectIDs,
Relation<V> database,
int dimension)
Computes the average distance of the objects to the centroid along the
specified dimension.
|
Modifier and Type | Method and Description |
---|---|
private List<PROCLUS.PROCLUSCluster> |
PROCLUS.finalAssignment(List<Pair<Vector,long[]>> dimensions,
Relation<V> database)
Refinement step to assign the objects to the final clusters.
|
Constructor and Description |
---|
PROCLUSCluster(ModifiableDBIDs objectIDs,
long[] dimensions,
Vector centroid)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
UKMeans.means(List<? extends ModifiableDBIDs> clusters,
List<? extends NumberVector> means,
Relation<DiscreteUncertainObject> database)
Returns the mean vectors of the given clusters in the given database.
|
Modifier and Type | Method and Description |
---|---|
protected double |
UKMeans.getExpectedRepDistance(Vector rep,
DiscreteUncertainObject uo)
Get expected distance between a Vector and an uncertain object
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
UKMeans.assignToNearestCluster(Relation<DiscreteUncertainObject> relation,
List<Vector> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
ALOCI.Node.center
Center vector
|
Modifier and Type | Method and Description |
---|---|
Vector |
ALOCI.Node.getCenter()
Return center vector
|
Constructor and Description |
---|
Node(int code,
Vector center,
int count,
int level,
List<ALOCI.Node> children)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
SOD.SODModel.center
Center vector
|
Modifier and Type | Method and Description |
---|---|
private static double[] |
SOD.computePerDimensionVariances(Relation<? extends NumberVector> relation,
Vector center,
DBIDs neighborhood)
Compute the per-dimension variances for the given neighborhood and center.
|
private double |
SOD.subspaceOutlierDegree(V queryObject,
Vector center,
long[] weightVector)
Compute SOD score.
|
Constructor and Description |
---|
SODModel(Vector center,
long[] weightVector)
Initialize SOD Model
|
Modifier and Type | Method and Description |
---|---|
static Vector |
VectorUtil.computeMedoid(Relation<? extends NumberVector> relation,
DBIDs sample)
Compute medoid for a given subset.
|
Vector |
ByteVector.getColumnVector() |
Vector |
SparseByteVector.getColumnVector() |
Vector |
SparseFloatVector.getColumnVector() |
Vector |
FloatVector.getColumnVector() |
Vector |
DoubleVector.getColumnVector() |
Vector |
OneDimensionalDoubleVector.getColumnVector() |
Vector |
SparseDoubleVector.getColumnVector() |
Vector |
SparseShortVector.getColumnVector() |
Vector |
SparseIntegerVector.getColumnVector() |
Vector |
IntegerVector.getColumnVector() |
Vector |
NumberVector.getColumnVector()
Returns a Vector representing in one column and
getDimensionality() rows the values of this NumberVector of V. |
Vector |
ShortVector.getColumnVector() |
Vector |
BitVector.getColumnVector()
Returns a Vector representing in one column and
getDimensionality() rows the values of this BitVector as
double values. |
Modifier and Type | Method and Description |
---|---|
static double |
VectorUtil.angle(NumberVector v1,
NumberVector v2,
Vector o)
Compute the angle between two vectors.
|
Constructor and Description |
---|
DoubleVector(Vector columnMatrix)
Expects a matrix of one column.
|
FloatVector(Vector columnMatrix)
Expects a matrix of one column.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
CorrelationAnalysisSolution.centroid
The centroid if the objects belonging to the hyperplane induced by the
correlation.
|
Modifier and Type | Method and Description |
---|---|
Vector |
CorrelationAnalysisSolution.dataVector(V p)
Returns the data vectors after projection.
|
Vector |
CorrelationAnalysisSolution.errorVector(V p)
Returns the error vectors after projection.
|
Vector |
CorrelationAnalysisSolution.getCentroid()
Returns the centroid of this model.
|
Vector |
MeanModel.getMean() |
Modifier and Type | Method and Description |
---|---|
private double |
CorrelationAnalysisSolution.distance(Vector p)
Returns the distance of Matrix p from the hyperplane underlying this
solution.
|
Constructor and Description |
---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix.
|
CorrelationAnalysisSolution(LinearEquationSystem solution,
Relation<V> db,
Matrix strongEigenvectors,
Matrix weakEigenvectors,
Matrix similarityMatrix,
Vector centroid,
NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
number format.
|
EMModel(Vector mean,
Matrix covarianceMatrix)
Constructor.
|
KMeansModel(Vector mean,
double varsum)
Constructor with mean.
|
MeanModel(Vector mean)
Constructor with mean
|
SubspaceModel(Subspace subspace,
Vector mean)
Creates a new SubspaceModel for the specified subspace with the given
cluster mean.
|
Modifier and Type | Field and Description |
---|---|
private List<Vector> |
Polygon.points
The actual points
|
Modifier and Type | Method and Description |
---|---|
Vector |
Polygon.get(int idx)
Get a vector by index.
|
Modifier and Type | Method and Description |
---|---|
ArrayListIter<Vector> |
Polygon.iter()
Get an iterator to the vector contents.
|
Modifier and Type | Method and Description |
---|---|
boolean |
Polygon.containsPoint2D(Vector v)
Point in polygon test, based on
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
by W.
|
Constructor and Description |
---|
Polygon(List<Vector> points)
Constructor.
|
Polygon(List<Vector> points,
double minx,
double maxx,
double miny,
double maxy) |
Modifier and Type | Field and Description |
---|---|
private Vector |
GeneratorSingleCluster.clipmax |
private Vector |
GeneratorSingleCluster.clipmin
Clipping vectors.
|
Modifier and Type | Field and Description |
---|---|
List<Vector> |
GeneratorStatic.points
Cluster points
|
Modifier and Type | Method and Description |
---|---|
Vector |
GeneratorSingleCluster.getClipmax()
Return a copy of the 'clipping maximum' vector
|
Vector |
GeneratorSingleCluster.getClipmin()
Return a copy of the 'clipping minimum' vector.
|
Modifier and Type | Method and Description |
---|---|
List<Vector> |
GeneratorInterface.generate(int count)
Generate a specified number of points
|
List<Vector> |
GeneratorStatic.generate(int count)
"Generate" new cluster points.
|
List<Vector> |
GeneratorSingleCluster.generate(int count)
Generate the given number of additional points.
|
Modifier and Type | Method and Description |
---|---|
void |
GeneratorSingleCluster.addTranslation(Vector v)
Add a translation to the generator
|
double |
GeneratorInterface.getDensity(Vector p)
Get the density of the given vector
|
double |
GeneratorStatic.getDensity(Vector p) |
double |
GeneratorSingleCluster.getDensity(Vector p)
Compute density for cluster model at given vector p-
|
void |
GeneratorSingleCluster.setClipping(Vector min,
Vector max)
Set a clipping box. min needs to be smaller than max in each component.
|
private boolean |
GeneratorSingleCluster.testClipping(Vector p)
Test if a point is to be clipped
|
Constructor and Description |
---|
GeneratorStatic(String name,
List<Vector> points)
Construct generator using given name and points
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Vector> |
TypeUtil.VECTOR
Vector type.
|
Modifier and Type | Method and Description |
---|---|
private Vector |
GeneratorXMLDatabaseConnection.parseVector(String s)
Parse a string into a vector.
|
Modifier and Type | Method and Description |
---|---|
private void |
GeneratorXMLDatabaseConnection.processElementPoint(List<Vector> points,
Node cur)
Parse a 'point' element (point vector for a static cluster)
|
Modifier and Type | Field and Description |
---|---|
private List<Vector> |
SimplePolygonParser.coords
(Reused) storage of coordinates.
|
Constructor and Description |
---|
ScoreResult(Collection<Vector> col)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
Vector |
SpatialPointLeafEntry.getColumnVector() |
Modifier and Type | Method and Description |
---|---|
static double |
MathUtil.angle(Vector v1,
Vector v2)
Compute the angle between two vectors.
|
static double |
MathUtil.angle(Vector v1,
Vector v2,
Vector o)
Compute the angle between two vectors.
|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix.
|
static double |
MathUtil.mahalanobisDistance(Matrix weightMatrix,
Vector o1,
Vector o2)
Compute the Mahalanobis distance using the given weight matrix.
|
Modifier and Type | Field and Description |
---|---|
Vector |
SweepHullDelaunay2D.Triangle.m
Center vector
|
Modifier and Type | Field and Description |
---|---|
private List<Vector> |
GrahamScanConvexHull2D.points
The current set of points
|
private List<Vector> |
AlphaShape.points
Points
|
private List<Vector> |
SweepHullDelaunay2D.points
The current set of points.
|
Modifier and Type | Method and Description |
---|---|
void |
GrahamScanConvexHull2D.add(Vector point)
Add a single point to the list (this does not compute the hull!)
|
void |
SweepHullDelaunay2D.add(Vector point)
Add a single point to the list (this does not compute or update the
triangulation!)
|
private double |
GrahamScanConvexHull2D.getRX(Vector a,
Vector origin)
Get the relative X coordinate to the origin.
|
private double |
GrahamScanConvexHull2D.getRY(Vector a,
Vector origin)
Get the relative Y coordinate to the origin.
|
boolean |
SweepHullDelaunay2D.Triangle.inCircle(Vector opp)
Test whether a point is within the circumference circle.
|
private boolean |
GrahamScanConvexHull2D.isConvex(Vector a,
Vector b,
Vector c)
Simple convexity test.
|
protected int |
GrahamScanConvexHull2D.isLeft(Vector a,
Vector b,
Vector o)
Test whether a point is left of the other wrt. the origin.
|
(package private) boolean |
SweepHullDelaunay2D.leftOf(Vector a,
Vector b,
Vector d)
Test if the vector AD is right of AB.
|
private double |
GrahamScanConvexHull2D.mdist(Vector a,
Vector b)
Manhattan distance.
|
static double |
SweepHullDelaunay2D.quadraticEuclidean(Vector v1,
Vector v2)
Squared euclidean distance. 2d.
|
Modifier and Type | Method and Description |
---|---|
(package private) boolean |
SweepHullDelaunay2D.Triangle.isClockwise(List<Vector> points)
Verify that the triangle is clockwise
|
(package private) void |
SweepHullDelaunay2D.Triangle.makeClockwise(List<Vector> points)
Make the triangle clockwise
|
private void |
AlphaShape.processNeighbor(List<Vector> cur,
long[] used,
int i,
int ab,
int b) |
(package private) boolean |
SweepHullDelaunay2D.Triangle.updateCircumcircle(List<Vector> points)
Recompute the location and squared radius of circumcircle.
|
Constructor and Description |
---|
AlphaShape(List<Vector> points,
double alpha) |
SweepHullDelaunay2D(List<Vector> points)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
Centroid
Class to compute the centroid of some data.
|
class |
ProjectedCentroid
Centroid only using a subset of dimensions.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
EigenPair.eigenvector
The eigenvector as a matrix.
|
Modifier and Type | Field and Description |
---|---|
static ByteBufferSerializer<Vector> |
Vector.BYTE_SERIALIZER
Serializer for up to 127 dimensions.
|
static ByteBufferSerializer<Vector> |
Vector.SHORT_SERIALIZER
Serializer for up to 2^15-1 dimensions.
|
static ByteBufferSerializer<Vector> |
Vector.VARIABLE_SERIALIZER
Serializer using varint encoding.
|
Modifier and Type | Method and Description |
---|---|
Vector |
AffineTransformation.apply(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
AffineTransformation.applyRelative(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyRelativeInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
Vector.clone() |
Vector |
Vector.copy()
Returns a copy of this vector.
|
Vector |
Vector.cross3D(Vector other)
Cross product for 3d vectors, i.e.
|
Vector |
Vector.SmallSerializer.fromByteBuffer(ByteBuffer buffer) |
Vector |
Vector.ShortSerializer.fromByteBuffer(ByteBuffer buffer) |
Vector |
Vector.VariableSerializer.fromByteBuffer(ByteBuffer buffer) |
Vector |
Matrix.getCol(int j)
Returns the
j th column of this matrix as vector. |
Vector |
Vector.getColumnVector() |
Vector |
EigenPair.getEigenvector()
Returns the eigenvector.
|
Vector |
CovarianceMatrix.getMeanVector()
Get the mean as vector.
|
Vector |
Matrix.getRow(int i)
Returns the
i th row of this matrix as vector. |
Vector |
AffineTransformation.homogeneRelativeVector(Vector v)
Transform a relative vector into homogeneous coordinates.
|
Vector |
AffineTransformation.homogeneVector(Vector v)
Transform an absolute vector into homogeneous coordinates.
|
Vector |
Vector.minus(Vector v)
Returns this vector minus the specified vector v.
|
Vector |
Vector.minusEquals(double d)
Subtract a constant value from all dimensions.
|
Vector |
Vector.minusEquals(Vector b)
a = a - b.
|
Vector |
Vector.minusTimes(Vector v,
double s)
Returns this vector minus the specified vector v times s.
|
Vector |
Vector.minusTimesEquals(Vector b,
double s)
a = a - s * b.
|
<A> Vector |
Vector.Factory.newFeatureVector(A array,
ArrayAdapter<? extends Number,A> adapter) |
<A> Vector |
Vector.Factory.newNumberVector(A array,
NumberArrayAdapter<?,? super A> adapter) |
Vector |
Vector.Factory.newNumberVector(double[] values) |
Vector |
Vector.Factory.newNumberVector(NumberVector values) |
Vector |
Vector.normalize()
Normalizes this vector to the length of 1.0.
|
Vector |
Vector.plus(Vector v)
Returns a new vector which is the result of this vector plus the specified
vector.
|
Vector |
Vector.plusEquals(double d)
Add a constant value to all dimensions.
|
Vector |
Vector.plusEquals(Vector b)
a = a + b.
|
Vector |
Vector.plusTimes(Vector v,
double s)
Returns a new vector which is the result of this vector plus the specified
vector times the given factor.
|
Vector |
Vector.plusTimesEquals(Vector b,
double s)
a = a + s * b.
|
Vector |
Vector.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix
v.
|
static Vector |
Vector.randomNormalizedVector(int dimensionality)
Returns a randomly created vector of length 1.0.
|
Vector |
Vector.rotate90Equals()
Rotate vector by 90 degrees.
|
Vector |
Vector.set(int i,
double value)
Sets the value at the specified row.
|
Vector |
Vector.set(Vector v)
Copy the values of another vector into the current vector.
|
Vector |
Vector.times(double s)
Returns a new vector which is the result of this vector multiplied by the
specified scalar.
|
Vector |
Matrix.times(Vector B)
Linear algebraic matrix multiplication, A * B
|
Vector |
Vector.timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A.
|
Vector |
Matrix.transposeTimes(Vector B)
Linear algebraic matrix multiplication, AT * B
|
Vector |
AffineTransformation.unhomogeneRelativeVector(Vector v)
Project an homogeneous vector back into the original space.
|
Vector |
AffineTransformation.unhomogeneVector(Vector v)
Project an homogeneous vector back into the original space.
|
static Vector |
Vector.unitVector(int dimensionality,
int i)
Returns the ith unit vector of the specified dimensionality.
|
Modifier and Type | Method and Description |
---|---|
ByteBufferSerializer<Vector> |
Vector.Factory.getDefaultSerializer() |
Class<? super Vector> |
Vector.Factory.getRestrictionClass() |
Modifier and Type | Method and Description |
---|---|
void |
AffineTransformation.addTranslation(Vector v)
Add a translation operation to the matrix
|
Vector |
AffineTransformation.apply(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
AffineTransformation.applyRelative(Vector v)
Apply the transformation onto a vector
|
Vector |
AffineTransformation.applyRelativeInverse(Vector v)
Apply the inverse transformation onto a vector
|
Vector |
Vector.cross3D(Vector other)
Cross product for 3d vectors, i.e.
|
static Matrix |
Matrix.diagonal(Vector diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
the diagonal.
|
int |
Vector.SmallSerializer.getByteSize(Vector vec) |
int |
Vector.ShortSerializer.getByteSize(Vector vec) |
int |
Vector.VariableSerializer.getByteSize(Vector vec) |
Vector |
AffineTransformation.homogeneRelativeVector(Vector v)
Transform a relative vector into homogeneous coordinates.
|
Vector |
AffineTransformation.homogeneVector(Vector v)
Transform an absolute vector into homogeneous coordinates.
|
Vector |
Vector.minus(Vector v)
Returns this vector minus the specified vector v.
|
Vector |
Vector.minusEquals(Vector b)
a = a - b.
|
Vector |
Vector.minusTimes(Vector v,
double s)
Returns this vector minus the specified vector v times s.
|
Vector |
Vector.minusTimesEquals(Vector b,
double s)
a = a - s * b.
|
Vector |
Vector.plus(Vector v)
Returns a new vector which is the result of this vector plus the specified
vector.
|
Vector |
Vector.plusEquals(Vector b)
a = a + b.
|
Vector |
Vector.plusTimes(Vector v,
double s)
Returns a new vector which is the result of this vector plus the specified
vector times the given factor.
|
Vector |
Vector.plusTimesEquals(Vector b,
double s)
a = a + s * b.
|
void |
Centroid.put(Vector val)
Add a single value with weight 1.0.
|
void |
CovarianceMatrix.put(Vector val)
Add a single value with weight 1.0.
|
void |
Centroid.put(Vector val,
double weight)
Add data with a given weight.
|
void |
CovarianceMatrix.put(Vector val,
double weight)
Add data with a given weight.
|
Vector |
Vector.set(Vector v)
Copy the values of another vector into the current vector.
|
void |
Matrix.setCol(int j,
Vector column)
Sets the
j th column of this matrix to the specified column. |
void |
Matrix.setRow(int j,
Vector row)
Sets the
j th row of this matrix to the specified vector. |
Vector |
Matrix.times(Vector B)
Linear algebraic matrix multiplication, A * B
|
Matrix |
Vector.timesTranspose(Vector B)
Linear algebraic matrix multiplication, A * B^T.
|
void |
Vector.SmallSerializer.toByteBuffer(ByteBuffer buffer,
Vector vec) |
void |
Vector.ShortSerializer.toByteBuffer(ByteBuffer buffer,
Vector vec) |
void |
Vector.VariableSerializer.toByteBuffer(ByteBuffer buffer,
Vector vec) |
double |
Vector.transposeTimes(Vector B)
Linear algebraic matrix multiplication, AT * B.
|
Vector |
Matrix.transposeTimes(Vector B)
Linear algebraic matrix multiplication, AT * B
|
double |
Vector.transposeTimesTimes(Matrix B,
Vector c)
Linear algebraic matrix multiplication, aT * B * c.
|
Vector |
AffineTransformation.unhomogeneRelativeVector(Vector v)
Project an homogeneous vector back into the original space.
|
Vector |
AffineTransformation.unhomogeneVector(Vector v)
Project an homogeneous vector back into the original space.
|
Constructor and Description |
---|
EigenPair(Vector eigenvector,
double eigenvalue)
Creates a new EigenPair object.
|
Modifier and Type | Field and Description |
---|---|
(package private) Vector |
AbstractRandomProjectionFamily.MatrixProjection.buf
Projection buffer.
|
Modifier and Type | Field and Description |
---|---|
private Vector |
MultipleLinearRegression.b
The (p+1 x 1) - vector holding the estimated b-values (b0, b1, ..., bp)^T.
|
private Vector |
MultipleLinearRegression.e
The (n x 1) - vector holding the estimated residuals (e1, ..., en)^T.
|
private Vector |
MultipleLinearRegression.y
The (n x 1) - vector holding the y-values (y1, ..., yn)^T.
|
Modifier and Type | Method and Description |
---|---|
Vector |
MultipleLinearRegression.getEstimatedCoefficients()
Returns the estimated coefficients
|
Vector |
MultipleLinearRegression.getEstimatedResiduals()
Returns the estimated residuals
|
Modifier and Type | Method and Description |
---|---|
private static Matrix |
PolynomialRegression.xMatrix(Vector x,
int p) |
Constructor and Description |
---|
MultipleLinearRegression(Vector y,
Matrix x)
Constructor.
|
PolynomialRegression(Vector y,
Vector x,
int p)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
TextWriterVector.write(TextWriterStream out,
String label,
Vector v)
Serialize an object into the inline section.
|
Modifier and Type | Method and Description |
---|---|
static String |
FormatUtil.format(Vector m)
Returns String-representation of Vector.
|
static String |
FormatUtil.format(Vector v,
int w,
int d)
Returns a string representation of this matrix.
|
static String |
FormatUtil.format(Vector m,
NumberFormat nf)
returns String-representation of Vector.
|
static String |
FormatUtil.format(Vector v,
String pre)
Returns a string representation of this matrix.
|
Modifier and Type | Field and Description |
---|---|
static NumberArrayAdapter<Double,Vector> |
ArrayLikeUtil.VECTORADAPTER
Adapter for vectors.
|
Modifier and Type | Method and Description |
---|---|
Double |
VectorAdapter.get(Vector array,
int off)
Deprecated.
|
byte |
VectorAdapter.getByte(Vector array,
int off) |
double |
VectorAdapter.getDouble(Vector array,
int off) |
float |
VectorAdapter.getFloat(Vector array,
int off) |
int |
VectorAdapter.getInteger(Vector array,
int off) |
long |
VectorAdapter.getLong(Vector array,
int off) |
short |
VectorAdapter.getShort(Vector array,
int off) |
int |
VectorAdapter.size(Vector array) |
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
VectorListParameter.parseValue(Object obj) |
Constructor and Description |
---|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint)
Constructs a vector list parameter with the given name and description.
|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint,
boolean optional)
Constructs a vector list parameter with the given name and description.
|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint,
List<Vector> defaultValue)
Constructs a vector list parameter with the given name and description.
|
VectorListParameter(OptionID optionID,
ParameterConstraint<List<Vector>> constraint,
List<Vector> defaultValue)
Constructs a vector list parameter with the given name and description.
|
Modifier and Type | Method and Description |
---|---|
protected abstract Vector |
AbstractSimpleProjection.dearrange(Vector v)
Undo the rearrangement of components.
|
protected Vector |
Simple2D.dearrange(Vector v) |
protected Vector |
Simple1D.dearrange(Vector v) |
protected Vector |
AbstractSimpleProjection.flipSecondEquals(Vector v)
Flip the y axis.
|
Vector |
FullProjection.projectDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectDataToRenderSpace(NumberVector data)
Project a data vector from data space to rendering space.
|
Vector |
FullProjection.projectDataToRenderSpace(Vector data)
Project a data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectDataToRenderSpace(Vector data)
Project a data vector from data space to rendering space.
|
Vector |
FullProjection.projectDataToScaledSpace(NumberVector data)
Project a data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectDataToScaledSpace(NumberVector data)
Project a data vector from data space to scaled space.
|
Vector |
FullProjection.projectDataToScaledSpace(Vector data)
Project a data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectDataToScaledSpace(Vector data)
Project a data vector from data space to scaled space.
|
Vector |
FullProjection.projectRelativeDataToRenderSpace(NumberVector data)
Project a relative data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectRelativeDataToRenderSpace(NumberVector data)
Project a relative data vector from data space to rendering space.
|
Vector |
FullProjection.projectRelativeDataToRenderSpace(Vector data)
Project a relative data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectRelativeDataToRenderSpace(Vector data)
Project a relative data vector from data space to rendering space.
|
Vector |
FullProjection.projectRelativeDataToScaledSpace(NumberVector data)
Project a relative data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectRelativeDataToScaledSpace(NumberVector data)
Project a relative data vector from data space to scaled space.
|
Vector |
FullProjection.projectRelativeDataToScaledSpace(Vector data)
Project a relative data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectRelativeDataToScaledSpace(Vector data)
Project a relative data vector from data space to scaled space.
|
Vector |
AbstractSimpleProjection.projectRelativeRenderToScaled(Vector v) |
Vector |
FullProjection.projectRelativeRenderToScaled(Vector v)
Project a relative vector from rendering space to scaled space.
|
Vector |
AffineProjection.projectRelativeRenderToScaled(Vector v)
Project a relative vector from rendering space to scaled space.
|
Vector |
AbstractSimpleProjection.projectRelativeScaledToRender(Vector v) |
Vector |
FullProjection.projectRelativeScaledToRender(Vector v)
Project a relative vector from scaled space to rendering space.
|
Vector |
AffineProjection.projectRelativeScaledToRender(Vector v)
Project a relative vector from scaled space to rendering space.
|
Vector |
AbstractSimpleProjection.projectRenderToScaled(Vector v) |
Vector |
FullProjection.projectRenderToScaled(Vector v)
Project a vector from rendering space to scaled space.
|
Vector |
AffineProjection.projectRenderToScaled(Vector v)
Project a vector from rendering space to scaled space.
|
Vector |
AbstractSimpleProjection.projectScaledToRender(Vector v) |
Vector |
FullProjection.projectScaledToRender(Vector v)
Project a vector from scaled space to rendering space.
|
Vector |
AffineProjection.projectScaledToRender(Vector v)
Project a vector from scaled space to rendering space.
|
protected abstract Vector |
AbstractSimpleProjection.rearrange(Vector v)
Method to rearrange components.
|
protected Vector |
Simple2D.rearrange(Vector v) |
protected Vector |
Simple1D.rearrange(Vector v) |
Modifier and Type | Method and Description |
---|---|
protected abstract Vector |
AbstractSimpleProjection.dearrange(Vector v)
Undo the rearrangement of components.
|
protected Vector |
Simple2D.dearrange(Vector v) |
protected Vector |
Simple1D.dearrange(Vector v) |
double |
Simple1D.fastProjectDataToRenderSpace(Vector data) |
double |
Projection1D.fastProjectDataToRenderSpace(Vector data)
Project a data vector from data space to rendering space.
|
double |
Simple1D.fastProjectRelativeDataToRenderSpace(Vector data) |
double |
Projection1D.fastProjectRelativeDataToRenderSpace(Vector data)
Project a data vector from data space to rendering space.
|
double |
Simple1D.fastProjectRelativeScaledToRender(Vector v) |
double |
Projection1D.fastProjectRelativeScaledToRender(Vector v)
Project a vector from scaled space to rendering space.
|
double |
Simple1D.fastProjectScaledToRender(Vector v) |
double |
Projection1D.fastProjectScaledToRender(Vector v)
Project a vector from scaled space to rendering space.
|
protected Vector |
AbstractSimpleProjection.flipSecondEquals(Vector v)
Flip the y axis.
|
Vector |
FullProjection.projectDataToRenderSpace(Vector data)
Project a data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectDataToRenderSpace(Vector data)
Project a data vector from data space to rendering space.
|
Vector |
FullProjection.projectDataToScaledSpace(Vector data)
Project a data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectDataToScaledSpace(Vector data)
Project a data vector from data space to scaled space.
|
Vector |
FullProjection.projectRelativeDataToRenderSpace(Vector data)
Project a relative data vector from data space to rendering space.
|
Vector |
AbstractFullProjection.projectRelativeDataToRenderSpace(Vector data)
Project a relative data vector from data space to rendering space.
|
Vector |
FullProjection.projectRelativeDataToScaledSpace(Vector data)
Project a relative data vector from data space to scaled space.
|
Vector |
AbstractFullProjection.projectRelativeDataToScaledSpace(Vector data)
Project a relative data vector from data space to scaled space.
|
<NV extends NumberVector> |
FullProjection.projectRelativeRenderToDataSpace(Vector v,
NumberVector.Factory<NV> prototype)
Project a relative vector from rendering space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectRelativeRenderToDataSpace(Vector v,
NumberVector.Factory<NV> prototype)
Project a relative vector from rendering space to data space.
|
Vector |
AbstractSimpleProjection.projectRelativeRenderToScaled(Vector v) |
Vector |
FullProjection.projectRelativeRenderToScaled(Vector v)
Project a relative vector from rendering space to scaled space.
|
Vector |
AffineProjection.projectRelativeRenderToScaled(Vector v)
Project a relative vector from rendering space to scaled space.
|
<NV extends NumberVector> |
FullProjection.projectRelativeScaledToDataSpace(Vector v,
NumberVector.Factory<NV> prototype)
Project a relative vector from scaled space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectRelativeScaledToDataSpace(Vector v,
NumberVector.Factory<NV> prototype)
Project a relative vector from scaled space to data space.
|
Vector |
AbstractSimpleProjection.projectRelativeScaledToRender(Vector v) |
Vector |
FullProjection.projectRelativeScaledToRender(Vector v)
Project a relative vector from scaled space to rendering space.
|
Vector |
AffineProjection.projectRelativeScaledToRender(Vector v)
Project a relative vector from scaled space to rendering space.
|
<NV extends NumberVector> |
FullProjection.projectRenderToDataSpace(Vector v,
NumberVector.Factory<NV> prototype)
Project a vector from rendering space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectRenderToDataSpace(Vector v,
NumberVector.Factory<NV> prototype)
Project a vector from rendering space to data space.
|
Vector |
AbstractSimpleProjection.projectRenderToScaled(Vector v) |
Vector |
FullProjection.projectRenderToScaled(Vector v)
Project a vector from rendering space to scaled space.
|
Vector |
AffineProjection.projectRenderToScaled(Vector v)
Project a vector from rendering space to scaled space.
|
<NV extends NumberVector> |
FullProjection.projectScaledToDataSpace(Vector v,
NumberVector.Factory<NV> factory)
Project a vector from scaled space to data space.
|
<NV extends NumberVector> |
AbstractFullProjection.projectScaledToDataSpace(Vector v,
NumberVector.Factory<NV> factory)
Project a vector from scaled space to data space.
|
Vector |
AbstractSimpleProjection.projectScaledToRender(Vector v) |
Vector |
FullProjection.projectScaledToRender(Vector v)
Project a vector from scaled space to rendering space.
|
Vector |
AffineProjection.projectScaledToRender(Vector v)
Project a vector from scaled space to rendering space.
|
protected abstract Vector |
AbstractSimpleProjection.rearrange(Vector v)
Method to rearrange components.
|
protected Vector |
Simple2D.rearrange(Vector v) |
protected Vector |
Simple1D.rearrange(Vector v) |
Modifier and Type | Method and Description |
---|---|
SVGPath |
SVGPath.cubicTo(Vector c1xy,
Vector c2xy,
Vector xy)
Cubic Bezier line to the given coordinates.
|
SVGPath |
SVGPath.drawTo(Vector xy)
Draw a line given a series of coordinates.
|
SVGPath |
SVGPath.ellipticalArc(Vector rxy,
double ar,
double la,
double sp,
Vector xy)
Elliptical arc curve to the given coordinates.
|
SVGPath |
SVGPath.lineTo(Vector xy)
Draw a line to the given coordinates.
|
SVGPath |
SVGPath.moveTo(Vector xy)
Move to the given coordinates.
|
SVGPath |
SVGPath.quadTo(Vector c1xy,
Vector xy)
Quadratic Bezier line to the given coordinates.
|
SVGPath |
SVGPath.relativeCubicTo(Vector c1xy,
Vector c2xy,
Vector xy)
Cubic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeEllipticalArc(Vector rxy,
double ar,
double la,
double sp,
Vector xy)
Elliptical arc curve to the given relative coordinates.
|
SVGPath |
SVGPath.relativeLineTo(Vector xy)
Draw a line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeMoveTo(Vector xy)
Move to the given relative coordinates.
|
SVGPath |
SVGPath.relativeQuadTo(Vector c1xy,
Vector xy)
Quadratic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeSmoothCubicTo(Vector c2xy,
Vector xy)
Smooth Cubic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.relativeSmoothQuadTo(Vector xy)
Smooth quadratic Bezier line to the given relative coordinates.
|
SVGPath |
SVGPath.smoothCubicTo(Vector c2xy,
Vector xy)
Smooth Cubic Bezier line to the given coordinates.
|
SVGPath |
SVGPath.smoothQuadTo(Vector xy)
Smooth quadratic Bezier line to the given coordinates.
|
Modifier and Type | Method and Description |
---|---|
private void |
EMClusterVisualization.Instance.drawArc(SVGPath path,
Vector cent,
Vector pre,
Vector nex,
Vector oPrev,
Vector oNext,
double scale)
Draw an arc to simulate the hyper ellipse.
|
protected void |
EMClusterVisualization.Instance.drawHullArc(String sname,
Vector cent,
Polygon chres)
Approximate the hull using arcs.
|
protected void |
EMClusterVisualization.Instance.drawHullLines(String sname,
Vector cent,
Polygon chres)
Approximate by convex hull.
|
protected void |
EMClusterVisualization.Instance.drawSphere2D(String sname,
Vector cent,
Vector[] pc)
Draw by approximating a sphere via cubic splines
|
protected void |
EMClusterVisualization.Instance.drawSphere2D(String sname,
Vector cent,
Vector[] pc)
Draw by approximating a sphere via cubic splines
|
protected Polygon |
EMClusterVisualization.Instance.makeHull(Vector[] pc)
Build a convex hull to approximate the sphere.
|
protected Polygon |
EMClusterVisualization.Instance.makeHullComplex(Vector[] pc)
Build a convex hull to approximate the sphere.
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
Modifier and Type | Field and Description |
---|---|
protected Relation<Vector> |
COPVectorVisualization.Instance.result
The outlier result to visualize
|
Modifier and Type | Method and Description |
---|---|
private void |
MoveObjectsToolVisualization.Instance.updateDB(DBIDs dbids,
Vector movingVector)
Updates the objects with the given DBIDs It will be moved depending on
the given Vector
|
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
protected void |
SameSizeKMeansAlgorithm.updateDistances(Relation<V> relation,
List<Vector> means,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
NumberVectorDistanceFunction<? super V> df)
Compute the distances of each object to all means.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.