Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm |
Algorithms suitable as a task for the
KDDTask main routine. |
de.lmu.ifi.dbs.elki.algorithm.benchmark |
Benchmarking pseudo algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.classification |
Classification algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.clustering |
Clustering based outlier detection.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance |
Distance-based outlier detection algorithms, such as DBOutlier and kNN.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.distance.parallel |
Parallel implementations of distance-based outlier detectors.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof.parallel |
Parallelized variants of LOF.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial |
Spatial outlier detection algorithms
|
de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood |
Spatial outlier neighborhood classes
|
de.lmu.ifi.dbs.elki.algorithm.statistics |
Statistical analysis algorithms
The algorithms in this package perform statistical analysis of the data
(e.g. compute distributions, distance distributions etc.)
|
de.lmu.ifi.dbs.elki.application.cache |
Utility applications for the persistence layer such as distance cache builders.
|
de.lmu.ifi.dbs.elki.application.greedyensemble |
Greedy ensembles for outlier detection.
|
de.lmu.ifi.dbs.elki.database |
ELKI database layer - loading, storing, indexing and accessing data
|
de.lmu.ifi.dbs.elki.database.query.distance |
Prepared queries for distances.
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views).
|
de.lmu.ifi.dbs.elki.distance.distancefunction |
Distance functions for use within ELKI.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.adapter |
Distance functions deriving distances from e.g. similarity measures
|
de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.correlation |
Distance functions using correlations.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.external |
Distance functions using external data sources.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.geo |
Geographic (earth) distance functions.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.histogram |
Distance functions for one-dimensional histograms.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski |
Minkowski space L_p norms such as the popular Euclidean and Manhattan distances.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.probabilistic |
Distance from probability theory, mostly divergences such as K-L-divergence, J-divergence.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.set |
Distance functions for binary and set type data.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.strings |
Distance functions for strings.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.subspace |
Distance functions based on subspaces.
|
de.lmu.ifi.dbs.elki.distance.distancefunction.timeseries |
Distance functions designed for time series.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.cluster |
Similarity measures for comparing clusters.
|
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.evaluation.clustering.internal |
Internal evaluation measures for clusterings.
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index |
Index structure implementations
|
de.lmu.ifi.dbs.elki.index.distancematrix |
Precomputed distance matrix.
|
de.lmu.ifi.dbs.elki.index.idistance |
iDistance is a distance based indexing technique, using a reference points embedding.
|
de.lmu.ifi.dbs.elki.index.lsh.hashfamilies |
Hash function families for LSH.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.localpca |
Index using a preprocessed local PCA.
|
de.lmu.ifi.dbs.elki.index.preprocessed.snn |
Indexes providing nearest neighbor sets
|
de.lmu.ifi.dbs.elki.index.tree.metrical |
Tree-based index structures for metrical vector spaces.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.covertree |
Cover-tree variations.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants |
M-Tree and variants.
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
tutorial.distancefunction |
Classes from the tutorial on implementing distance functions.
|
tutorial.outlier |
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O> |
AbstractDistanceBasedAlgorithm.distanceFunction
Holds the instance of the distance function specified by
DistanceBasedAlgorithm.DISTANCE_FUNCTION_ID . |
protected DistanceFunction<O> |
AbstractDistanceBasedAlgorithm.Parameterizer.distanceFunction
The distance function to use.
|
Modifier and Type | Method and Description |
---|---|
static <F extends DistanceFunction<?>> |
AbstractAlgorithm.makeParameterDistanceFunction(Class<?> defaultDistanceFunction,
Class<?> restriction)
Make a default distance function configuration option.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O> |
DistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction.
|
DistanceFunction<? super O> |
AbstractDistanceBasedAlgorithm.getDistanceFunction()
Returns the distanceFunction.
|
Constructor and Description |
---|
AbstractDistanceBasedAlgorithm(DistanceFunction<? super O> distanceFunction)
Constructor.
|
KNNDistancesSampler(DistanceFunction<O> distanceFunction,
int k,
double sample,
RandomFactory rnd)
Constructor.
|
KNNJoin(DistanceFunction<? super V> distanceFunction,
int k)
Constructor.
|
MaterializeDistances(DistanceFunction<? super O> distanceFunction)
Constructor.
|
Constructor and Description |
---|
KNNBenchmarkAlgorithm(DistanceFunction<? super O> distanceFunction,
int k,
DatabaseConnection queries,
double sampling,
RandomFactory random)
Constructor.
|
RangeQueryBenchmarkAlgorithm(DistanceFunction<? super O> distanceFunction,
DatabaseConnection queries,
double sampling,
RandomFactory random)
Constructor.
|
ValidateApproximativeKNNIndex(DistanceFunction<? super O> distanceFunction,
int k,
DatabaseConnection queries,
double sampling,
boolean forcelinear,
RandomFactory random,
Pattern pattern)
Constructor.
|
Constructor and Description |
---|
KNNClassifier(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super V> |
AbstractProjectedClustering.distanceFunction
The Euclidean distance function.
|
Modifier and Type | Method and Description |
---|---|
protected DistanceFunction<? super V> |
AbstractProjectedClustering.getDistanceFunction()
Returns the distance function.
|
Constructor and Description |
---|
CanopyPreClustering(DistanceFunction<? super O> distanceFunction,
double t1,
double t2)
Constructor.
|
DBSCAN(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor with parameters.
|
NaiveMeanShiftClustering(DistanceFunction<? super V> distanceFunction,
KernelDensityFunction kernel,
double range)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super O> |
DistanceBasedInitializationWithMedian.distance
Distance function.
|
(package private) DistanceFunction<? super O> |
DistanceBasedInitializationWithMedian.Parameterizer.distance
istance function.
|
Constructor and Description |
---|
DistanceBasedInitializationWithMedian(DistanceFunction<? super O> distance,
double quantile)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<O> |
EpsilonNeighborPredicate.Parameterizer.distfun
Distance function to use
|
(package private) DistanceFunction<O> |
AbstractRangeQueryNeighborPredicate.Parameterizer.distfun
Distance function to use
|
protected DistanceFunction<? super O> |
EpsilonNeighborPredicate.distFunc
Distance function to use
|
protected DistanceFunction<? super O> |
AbstractRangeQueryNeighborPredicate.distFunc
Distance function to use.
|
Constructor and Description |
---|
AbstractRangeQueryNeighborPredicate(double epsilon,
DistanceFunction<? super O> distFunc)
Full constructor.
|
EpsilonNeighborPredicate(double epsilon,
DistanceFunction<? super O> distFunc)
Full constructor.
|
LSDBC(DistanceFunction<? super O> distanceFunction,
int k,
double alpha)
Constructor.
|
Constructor and Description |
---|
AbstractHDBSCAN(DistanceFunction<? super O> distanceFunction,
int minPts)
Constructor.
|
AGNES(DistanceFunction<? super O> distanceFunction,
LinkageMethod linkage)
Constructor.
|
AnderbergHierarchicalClustering(DistanceFunction<? super O> distanceFunction,
LinkageMethod linkage)
Constructor.
|
CLINK(DistanceFunction<? super O> distanceFunction)
Constructor.
|
HDBSCANLinearMemory(DistanceFunction<? super O> distanceFunction,
int minPts)
Constructor.
|
SLINK(DistanceFunction<? super O> distanceFunction)
Constructor.
|
SLINKHDBSCANLinearMemory(DistanceFunction<? super O> distanceFunction,
int minPts)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super V> |
KMeansBisecting.getDistanceFunction() |
DistanceFunction<? super V> |
BestOfMultipleKMeans.getDistanceFunction() |
Constructor and Description |
---|
CLARA(DistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMedoidsInitialization<V> initializer,
int numsamples,
double sampling,
RandomFactory random)
Constructor.
|
KMedoidsEM(DistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMedoidsInitialization<V> initializer)
Constructor.
|
KMedoidsPAM(DistanceFunction<? super V> distanceFunction,
int k,
int maxiter,
KMedoidsInitialization<V> initializer)
Constructor.
|
Constructor and Description |
---|
AbstractOPTICS(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor.
|
DeLiClu(DistanceFunction<? super NV> distanceFunction,
int minpts)
Constructor.
|
OPTICSHeap(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor.
|
OPTICSList(DistanceFunction<? super O> distanceFunction,
double epsilon,
int minpts)
Constructor.
|
Constructor and Description |
---|
COP(DistanceFunction<? super V> distanceFunction,
int k,
PCARunner pca,
double expect,
COP.DistanceDist dist,
boolean models)
Constructor.
|
DWOF(DistanceFunction<? super O> distanceFunction,
int k,
double delta)
Constructor.
|
OPTICSOF(DistanceFunction<? super O> distanceFunction,
int minpts)
Constructor with parameters.
|
SimpleCOP(DistanceFunction<? super V> distanceFunction,
int k,
PCAFilteredRunner pca)
Constructor.
|
Constructor and Description |
---|
SilhouetteOutlierDetection(DistanceFunction<? super O> distanceFunction,
ClusteringAlgorithm<?> clusterer,
NoiseHandling noiseOption)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractDBOutlier.Parameterizer.configD(Parameterization config,
DistanceFunction<?> distanceFunction)
Grab the 'd' configuration option.
|
Constructor and Description |
---|
AbstractDBOutlier(DistanceFunction<? super O> distanceFunction,
double d)
Constructor with actual parameters.
|
DBOutlierDetection(DistanceFunction<O> distanceFunction,
double d,
double p)
Constructor with actual parameters.
|
DBOutlierScore(DistanceFunction<O> distanceFunction,
double d)
Constructor with parameters.
|
KNNOutlier(DistanceFunction<? super O> distanceFunction,
int k)
Constructor for a single kNN query.
|
KNNWeightOutlier(DistanceFunction<? super O> distanceFunction,
int k)
Constructor with parameters.
|
ODIN(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
Constructor and Description |
---|
ParallelKNNOutlier(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
ParallelKNNWeightOutlier(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O> |
LoOP.comparisonDistanceFunction
Distance function for comparison set.
|
protected DistanceFunction<O> |
LoOP.Parameterizer.comparisonDistanceFunction
Preprocessor Step 2.
|
protected DistanceFunction<O> |
FlexibleLOF.Parameterizer.neighborhoodDistanceFunction
Neighborhood distance function.
|
protected DistanceFunction<? super O> |
FlexibleLOF.reachabilityDistanceFunction
Reachability distance function.
|
protected DistanceFunction<O> |
FlexibleLOF.Parameterizer.reachabilityDistanceFunction
Reachability distance function.
|
protected DistanceFunction<? super O> |
LoOP.reachabilityDistanceFunction
Distance function for reachability.
|
protected DistanceFunction<O> |
LoOP.Parameterizer.reachabilityDistanceFunction
Preprocessor Step 1.
|
protected DistanceFunction<? super O> |
FlexibleLOF.referenceDistanceFunction
Neighborhood distance function.
|
Constructor and Description |
---|
COF(int k,
DistanceFunction<? super O> distanceFunction)
Constructor.
|
FlexibleLOF(int krefer,
int kreach,
DistanceFunction<? super O> neighborhoodDistanceFunction,
DistanceFunction<? super O> reachabilityDistanceFunction)
Constructor.
|
FlexibleLOF(int krefer,
int kreach,
DistanceFunction<? super O> neighborhoodDistanceFunction,
DistanceFunction<? super O> reachabilityDistanceFunction)
Constructor.
|
INFLO(DistanceFunction<? super O> distanceFunction,
double m,
int k)
Constructor with parameters.
|
KDEOS(DistanceFunction<? super O> distanceFunction,
int kmin,
int kmax,
KernelDensityFunction kernel,
double minBandwidth,
double scale,
int idim)
Constructor.
|
LDF(int k,
DistanceFunction<? super O> distance,
KernelDensityFunction kernel,
double h,
double c)
Constructor.
|
LDOF(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
LOCI(DistanceFunction<? super O> distanceFunction,
double rmax,
int nmin,
double alpha)
Constructor.
|
LOF(int k,
DistanceFunction<? super O> distanceFunction)
Constructor.
|
LoOP(int kreach,
int kcomp,
DistanceFunction<? super O> reachabilityDistanceFunction,
DistanceFunction<? super O> comparisonDistanceFunction,
double lambda)
Constructor with parameters.
|
LoOP(int kreach,
int kcomp,
DistanceFunction<? super O> reachabilityDistanceFunction,
DistanceFunction<? super O> comparisonDistanceFunction,
double lambda)
Constructor with parameters.
|
OnlineLOF(int krefer,
int kreach,
DistanceFunction<? super O> neighborhoodDistanceFunction,
DistanceFunction<? super O> reachabilityDistanceFunction)
Constructor.
|
OnlineLOF(int krefer,
int kreach,
DistanceFunction<? super O> neighborhoodDistanceFunction,
DistanceFunction<? super O> reachabilityDistanceFunction)
Constructor.
|
SimpleKernelDensityLOF(int k,
DistanceFunction<? super O> distance,
KernelDensityFunction kernel)
Constructor.
|
SimplifiedLOF(int k,
DistanceFunction<? super O> distance)
Constructor.
|
Constructor and Description |
---|
ParallelLOF(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
ParallelSimplifiedLOF(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<O> |
AbstractDistanceBasedSpatialOutlier.nonSpatialDistanceFunction
The distance function to use
|
Modifier and Type | Method and Description |
---|---|
protected DistanceFunction<O> |
AbstractDistanceBasedSpatialOutlier.getNonSpatialDistanceFunction()
Get the non-spatial relation
|
Constructor and Description |
---|
AbstractDistanceBasedSpatialOutlier(NeighborSetPredicate.Factory<N> npredf,
DistanceFunction<O> nonSpatialDistanceFunction)
Constructor.
|
CTLuGLSBackwardSearchAlgorithm(DistanceFunction<V> distanceFunction,
int k,
double alpha)
Constructor.
|
CTLuRandomWalkEC(DistanceFunction<N> distanceFunction,
double alpha,
double c,
int k)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O> |
PrecomputedKNearestNeighborNeighborhood.Factory.distFunc
distance function to use
|
(package private) DistanceFunction<? super O> |
PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer.distFunc
Distance function
|
Constructor and Description |
---|
Factory(int k,
DistanceFunction<? super O> distFunc)
Factory Constructor
|
Constructor and Description |
---|
AveragePrecisionAtK(DistanceFunction<? super O> distanceFunction,
int k,
double sampling,
RandomFactory random,
boolean includeSelf)
Constructor.
|
DistanceStatisticsWithClasses(DistanceFunction<? super O> distanceFunction,
int numbins,
boolean exact,
boolean sampling)
Constructor.
|
EstimateIntrinsicDimensionality(DistanceFunction<? super O> distanceFunction,
IntrinsicDimensionalityEstimator estimator,
double krate,
double samples)
Constructor.
|
EvaluateRankingQuality(DistanceFunction<? super V> distanceFunction,
int numbins)
Constructor.
|
EvaluateRetrievalPerformance(DistanceFunction<? super O> distanceFunction,
double sampling,
RandomFactory random,
boolean includeSelf,
int maxk)
Constructor.
|
RankingQualityHistogram(DistanceFunction<? super O> distanceFunction,
int numbins)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<O> |
CacheFloatDistanceInOnDiskMatrix.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheFloatDistanceInOnDiskMatrix.Parameterizer.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheDoubleDistanceKNNLists.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheDoubleDistanceKNNLists.Parameterizer.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheDoubleDistanceRangeQueries.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheDoubleDistanceRangeQueries.Parameterizer.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheDoubleDistanceInOnDiskMatrix.distance
Distance function that is to be cached.
|
private DistanceFunction<O> |
CacheDoubleDistanceInOnDiskMatrix.Parameterizer.distance
Distance function that is to be cached.
|
Constructor and Description |
---|
CacheDoubleDistanceInOnDiskMatrix(InputStep input,
DistanceFunction<O> distance,
File out)
Constructor.
|
CacheDoubleDistanceKNNLists(InputStep input,
DistanceFunction<O> distance,
int k,
File out)
Constructor.
|
CacheDoubleDistanceRangeQueries(InputStep input,
DistanceFunction<O> distance,
double radius,
File out)
Constructor.
|
CacheFloatDistanceInOnDiskMatrix(InputStep input,
DistanceFunction<O> distance,
File out)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super O> |
ComputeKNNOutlierScores.distf
Distance function to use
|
(package private) DistanceFunction<? super O> |
ComputeKNNOutlierScores.Parameterizer.distf
Distance function to use
|
Constructor and Description |
---|
ComputeKNNOutlierScores(InputStep inputstep,
DistanceFunction<? super O> distf,
int startk,
int stepk,
int maxk,
ByLabelOutlier bylabel,
File outfile,
ScalingFunction scaling,
Pattern disable)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <O> DistanceQuery<O> |
QueryUtil.getDistanceQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a distance query for a given distance function, automatically choosing
a relation.
|
<O> DistanceQuery<O> |
Database.getDistanceQuery(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get the distance query for a particular distance function.
|
<O> DistanceQuery<O> |
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
DistanceFunction<? super O> distanceFunction,
Object... hints) |
static <O> KNNQuery<O> |
QueryUtil.getKNNQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O> KNNQuery<O> |
QueryUtil.getKNNQuery(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a KNN query object for the given distance function.
|
static <O> RangeQuery<O> |
QueryUtil.getRangeQuery(Database database,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a range query object for the given distance function for radius-based
neighbor search.
|
static <O> RangeQuery<O> |
QueryUtil.getRangeQuery(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a range query object for the given distance function for radius-based
neighbor search.
|
static <O> RKNNQuery<O> |
QueryUtil.getRKNNQuery(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance function.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O> |
DistanceQuery.getDistanceFunction()
Get the inner distance function.
|
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
AbstractRelation.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
Object... hints) |
DistanceQuery<O> |
Relation.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
Object... hints)
Get the distance query for a particular distance function.
|
KNNQuery<O> |
AbstractRelation.getKNNQuery(DistanceFunction<? super O> distanceFunction,
Object... hints) |
KNNQuery<O> |
Relation.getKNNQuery(DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a KNN query object for the given distance query.
|
RangeQuery<O> |
AbstractRelation.getRangeQuery(DistanceFunction<? super O> distanceFunction,
Object... hints) |
RangeQuery<O> |
Relation.getRangeQuery(DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a range query object for the given distance query.
|
RKNNQuery<O> |
AbstractRelation.getRKNNQuery(DistanceFunction<? super O> distanceFunction,
Object... hints) |
RKNNQuery<O> |
Relation.getRKNNQuery(DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a rKNN query object for the given distance query.
|
Modifier and Type | Class and Description |
---|---|
static class |
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,F extends DistanceFunction<? super O>>
The actual instance bound to a particular database.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DBIDDistanceFunction
Distance functions valid in a database context only (i.e. for DBIDs)
For any "distance" that cannot be computed for arbitrary objects, only those
that exist in the database and referenced by their ID.
|
interface |
DBIDRangeDistanceFunction
Distance functions valid in a static database context only (i.e. for
DBIDRanges)
For any "distance" that cannot be computed for arbitrary objects, only those
that exist in the database and referenced by their ID.
|
interface |
IndexBasedDistanceFunction<O>
Distance function relying on an index (such as preprocessed neighborhoods).
|
interface |
Norm<O>
Abstract interface for a mathematical norm.
|
interface |
NumberVectorDistanceFunction<O>
Base interface for the common case of distance functions defined on numerical
vectors.
|
interface |
PrimitiveDistanceFunction<O>
Primitive distance function that is defined on some kind of object.
|
interface |
SpatialPrimitiveDistanceFunction<V extends SpatialComparable>
API for a spatial primitive distance function.
|
interface |
WeightedNumberVectorDistanceFunction<V>
Distance functions where each dimension is assigned a weight.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDatabaseDistanceFunction<O>
Abstract super class for distance functions needing a database context.
|
class |
AbstractDBIDRangeDistanceFunction
Abstract base class for distance functions that rely on integer offsets
within a consecutive range.
|
class |
AbstractIndexBasedDistanceFunction<O,I extends Index>
Abstract super class for distance functions needing a database index.
|
class |
AbstractNumberVectorDistanceFunction
Abstract base class for the most common family of distance functions: defined
on number vectors and returning double values.
|
class |
AbstractNumberVectorNorm
Abstract base class for double-valued number-vector-based distances based on
norms.
|
class |
AbstractPrimitiveDistanceFunction<O>
AbstractDistanceFunction provides some methods valid for any extending class.
|
class |
AbstractSpatialDistanceFunction
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
AbstractSpatialNorm
Abstract base class for typical distance functions that allow
rectangle-to-rectangle lower bounds.
|
class |
ArcCosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
spaces.
|
class |
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance.
|
class |
ClarkDistanceFunction
Clark distance function for vector spaces.
|
class |
CosineDistanceFunction
Cosine distance function for feature vectors.
|
class |
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form.
|
class |
LorentzianDistanceFunction
Lorentzian distance function for vector spaces.
|
class |
MatrixWeightedDistanceFunction
Weighted distance for feature vectors.
|
class |
RandomStableDistanceFunction
This is a dummy distance providing random values (obviously not metrical),
useful mostly for unit tests and baseline evaluations: obviously this
distance provides no benefit whatsoever.
|
class |
SharedNearestNeighborJaccardDistanceFunction<O>
SharedNearestNeighborJaccardDistanceFunction computes the Jaccard
coefficient, which is a proper distance metric.
|
class |
WeightedCanberraDistanceFunction
Weighted Canberra distance function, a variation of Manhattan distance.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super O> |
AbstractDatabaseDistanceFunction.Instance.parent
Parent distance
|
protected F |
AbstractIndexBasedDistanceFunction.Instance.parent
Our parent distance function
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O> |
AbstractDatabaseDistanceFunction.Instance.getDistanceFunction() |
Constructor and Description |
---|
Instance(Relation<O> database,
DistanceFunction<? super O> parent)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSimilarityAdapter<O>
Adapter from a similarity function to a distance function.
|
class |
ArccosSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function using
arccos(sim) . |
class |
LinearAdapterLinear<O>
Adapter from a normalized similarity function to a distance function using
1 - sim . |
class |
LnSimilarityAdapter<O>
Adapter from a normalized similarity function to a distance function using
-log(sim) . |
Constructor and Description |
---|
Instance(Relation<O> database,
DistanceFunction<? super O> parent,
SimilarityQuery<? super O> similarityQuery)
Constructor.
|
Instance(Relation<O> database,
DistanceFunction<? super O> parent,
SimilarityQuery<? super O> similarityQuery)
Constructor.
|
Instance(Relation<O> database,
DistanceFunction<? super O> parent,
SimilarityQuery<O> similarityQuery)
Constructor.
|
Instance(Relation<O> database,
DistanceFunction<? super O> parent,
SimilarityQuery<O> similarityQuery)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramIntersectionDistanceFunction
Intersection distance for color histograms.
|
class |
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
color similarity.
|
class |
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
color similarity.
|
Modifier and Type | Class and Description |
---|---|
class |
AbsolutePearsonCorrelationDistanceFunction
Absolute Pearson correlation distance function for feature vectors.
|
class |
AbsoluteUncenteredCorrelationDistanceFunction
Absolute uncentered correlation distance function for feature vectors.
|
class |
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
class |
SquaredUncenteredCorrelationDistanceFunction
Squared uncentered correlation distance function for feature vectors.
|
class |
UncenteredCorrelationDistanceFunction
Uncentered correlation distance.
|
class |
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors.
|
class |
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
DiskCacheBasedDoubleDistanceFunction
Distance function that is based on double distances given by a distance
matrix of an external binary matrix file.
|
class |
DiskCacheBasedFloatDistanceFunction
Distance function that is based on float distances given by a distance matrix
of an external binary matrix file.
|
class |
FileBasedDoubleDistanceFunction
Distance function that is based on double distances given by a distance
matrix of an external ASCII file.
|
class |
FileBasedFloatDistanceFunction
Distance function that is based on float distances given by a distance matrix
of an external ASCII file.
|
Modifier and Type | Class and Description |
---|---|
class |
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form.
|
class |
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form.
|
Modifier and Type | Class and Description |
---|---|
class |
HistogramMatchDistanceFunction
Distance function based on histogram matching, i.e.
|
class |
KolmogorovSmirnovDistanceFunction
Distance function based on the Kolmogorov-Smirnov goodness of fit test.
|
Modifier and Type | Class and Description |
---|---|
class |
EuclideanDistanceFunction
Euclidean distance for
NumberVector s. |
class |
LPIntegerNormDistanceFunction
LP-Norm for
NumberVector s, optimized version for integer values of p. |
class |
LPNormDistanceFunction
LP-Norm for
NumberVector s. |
class |
ManhattanDistanceFunction
Manhattan distance for
NumberVector s. |
class |
MaximumDistanceFunction
Maximum distance for
NumberVector s. |
class |
MinimumDistanceFunction
Maximum distance for
NumberVector s. |
class |
SparseEuclideanDistanceFunction
Euclidean distance function, optimized for
SparseNumberVector s. |
class |
SparseLPNormDistanceFunction
LP-Norm, optimized for
SparseNumberVector s. |
class |
SparseManhattanDistanceFunction
Manhattan distance, optimized for
SparseNumberVector s. |
class |
SparseMaximumDistanceFunction
Maximum distance, optimized for
SparseNumberVector s. |
class |
SquaredEuclideanDistanceFunction
Squared Euclidean distance, optimized for
SparseNumberVector s. |
class |
WeightedEuclideanDistanceFunction
Weighted Euclidean distance for
NumberVector s. |
class |
WeightedLPNormDistanceFunction
Weighted version of the Minkowski L_p norm distance for
NumberVector . |
class |
WeightedManhattanDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
NumberVector s. |
class |
WeightedMaximumDistanceFunction
Weighted version of the Minkowski L_p metrics distance function for
NumberVector s. |
class |
WeightedSquaredEuclideanDistanceFunction
Squared Euclidean distance for
NumberVector s. |
Modifier and Type | Class and Description |
---|---|
class |
ChiSquaredDistanceFunction
Chi-Squared distance function, symmetric version.
|
class |
HellingerDistanceFunction
Hellinger kernel / Hellinger distance are used with SIFT vectors, and also
known as Bhattacharyya distance / coefficient.
|
class |
JeffreyDivergenceDistanceFunction
Jeffrey Divergence Distance for
NumberVector s. |
class |
JensenShannonDivergenceDistanceFunction
Jensen-Shannon Divergence is essentially the same as Jeffrey divergence, only
scaled by half.
|
class |
KullbackLeiblerDivergenceAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
KullbackLeiblerDivergenceReverseAsymmetricDistanceFunction
Kullback-Leibler (asymmetric!)
|
class |
SqrtJensenShannonDivergenceDistanceFunction
The square root of Jensen-Shannon divergence is metric.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSetDistanceFunction<O>
Abstract base class for set distance functions.
|
class |
HammingDistanceFunction
Computes the Hamming distance of arbitrary vectors - i.e. counting, on how
many places they differ.
|
class |
JaccardSimilarityDistanceFunction<O extends FeatureVector<?>>
A flexible extension of Jaccard similarity to non-binary vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
LevenshteinDistanceFunction
Classic Levenshtein distance on strings.
|
class |
NormalizedLevenshteinDistanceFunction
Levenshtein distance on strings, normalized by string length.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DimensionSelectingSubspaceDistanceFunction<O>
Interface for dimension selecting subspace distance functions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDimensionsSelectingDistanceFunction<V extends FeatureVector<?>>
Abstract base class for distances computed only in subspaces.
|
class |
OnedimensionalDistanceFunction
Distance function that computes the distance between feature vectors as the
absolute difference of their values in a specified dimension only.
|
class |
SubspaceEuclideanDistanceFunction
Euclidean distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceLPNormDistanceFunction
LP-Norm distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceManhattanDistanceFunction
Manhattan distance function between
NumberVector s only in specified
dimensions. |
class |
SubspaceMaximumDistanceFunction
Maximum distance function between
NumberVector s only in specified
dimensions. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractEditDistanceFunction
Edit Distance for FeatureVectors.
|
class |
DerivativeDTWDistanceFunction
Derivative Dynamic Time Warping distance for numerical vectors.
|
class |
DTWDistanceFunction
Dynamic Time Warping distance (DTW) for numerical vectors.
|
class |
EDRDistanceFunction
Edit Distance on Real Sequence distance for numerical vectors.
|
class |
ERPDistanceFunction
Edit Distance With Real Penalty distance for numerical vectors.
|
class |
LCSSDistanceFunction
Longest Common Subsequence distance for numerical vectors.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusteringDistanceSimilarityFunction
Distance and similarity measure for clusterings.
|
Modifier and Type | Class and Description |
---|---|
class |
ClusteringAdjustedRandIndexSimilarityFunction
Measure the similarity of clusters via the Adjusted Rand Index.
|
class |
ClusteringBCubedF1SimilarityFunction
Measure the similarity of clusters via the BCubed F1 Index.
|
class |
ClusteringFowlkesMallowsSimilarityFunction
Measure the similarity of clusters via the Fowlkes-Mallows Index.
|
class |
ClusteringRandIndexSimilarityFunction
Measure the similarity of clusters via the Rand Index.
|
class |
ClusterIntersectionSimilarityFunction
Measure the similarity of clusters via the intersection size.
|
class |
ClusterJaccardSimilarityFunction
Measure the similarity of clusters via the Jaccard coefficient.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearKernelFunction
Linear Kernel function that computes a similarity between the two feature
vectors V1 and V2 defined by V1^T*V2.
|
class |
PolynomialKernelFunction
Polynomial Kernel function that computes a similarity between the two feature
vectors V1 and V2 defined by (V1^T*V2)^degree.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O> |
EvaluateCIndex.distance
Distance function to use.
|
private DistanceFunction<? super O> |
EvaluateCIndex.Parameterizer.distance
Distance function to use.
|
private DistanceFunction<? super O> |
EvaluateSilhouette.distance
Distance function to use.
|
private DistanceFunction<? super O> |
EvaluateSilhouette.Parameterizer.distance
Distance function to use.
|
Constructor and Description |
---|
EvaluateCIndex(DistanceFunction<? super O> distance,
NoiseHandling noiseOpt)
Constructor.
|
EvaluateSilhouette(DistanceFunction<? super O> distance,
boolean mergenoise)
Constructor.
|
EvaluateSilhouette(DistanceFunction<? super O> distance,
NoiseHandling noiseOption,
boolean penalize)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private DistanceFunction<? super O> |
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use
|
private DistanceFunction<O> |
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use
|
Constructor and Description |
---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O> distanceFunction,
ScalingFunction scaling,
boolean skipzero)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
DistanceIndex.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
Object... hints)
Get a KNN query object for the given distance query and k.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O> |
PrecomputedDistanceMatrix.distanceFunction
Nested distance function.
|
protected DistanceFunction<? super O> |
PrecomputedDistanceMatrix.Factory.distanceFunction
Nested distance function.
|
protected DistanceFunction<? super O> |
PrecomputedDistanceMatrix.Factory.Parameterizer.distanceFunction
Nested distance function.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O> |
PrecomputedDistanceMatrix.PrecomputedDistanceQuery.getDistanceFunction() |
Modifier and Type | Method and Description |
---|---|
DistanceQuery<O> |
PrecomputedDistanceMatrix.getDistanceQuery(DistanceFunction<? super O> distanceFunction,
Object... hints) |
Constructor and Description |
---|
Factory(DistanceFunction<? super O> distanceFunction)
Constructor.
|
PrecomputedDistanceMatrix(Relation<O> relation,
DistanceFunction<? super O> distanceFunction)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
(package private) DistanceFunction<? super V> |
InMemoryIDistanceIndex.Factory.distance
Distance function to use.
|
(package private) DistanceFunction<? super V> |
InMemoryIDistanceIndex.Factory.Parameterizer.distance
Distance function to use.
|
Modifier and Type | Method and Description |
---|---|
private DistanceFunction<? super O> |
InMemoryIDistanceIndex.getDistanceFunction()
Distance function.
|
Constructor and Description |
---|
Factory(DistanceFunction<? super V> distance,
KMedoidsInitialization<V> initialization,
int k)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
boolean |
LocalitySensitiveHashFunctionFamily.isCompatible(DistanceFunction<?> df)
Check whether the given distance function can be accelerated using this
hash family.
|
boolean |
ManhattanHashFunctionFamily.isCompatible(DistanceFunction<?> df) |
boolean |
CosineHashFunctionFamily.isCompatible(DistanceFunction<?> df) |
boolean |
EuclideanHashFunctionFamily.isCompatible(DistanceFunction<?> df) |
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O> |
AbstractMaterializeKNNPreprocessor.distanceFunction
The distance function to be used.
|
protected DistanceFunction<? super O> |
AbstractMaterializeKNNPreprocessor.Factory.distanceFunction
Hold the distance function to be used.
|
protected DistanceFunction<? super O> |
AbstractMaterializeKNNPreprocessor.Factory.Parameterizer.distanceFunction
Hold the distance function to be used.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O> |
AbstractMaterializeKNNPreprocessor.Factory.getDistanceFunction()
Get the distance function.
|
Constructor and Description |
---|
AbstractMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
CachedDoubleDistanceKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k,
File file)
Constructor.
|
Factory(int k,
DistanceFunction<? super NumberVector> distanceFunction)
Constructor.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction)
Constructor.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction)
Index factory.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction)
Index factory.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction)
Constructor.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction)
Constructor.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction,
double share,
RandomFactory rnd)
Constructor.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction,
File filename)
Index factory.
|
Factory(int k,
DistanceFunction<? super O> distanceFunction,
int partitions,
RandomFactory rnd)
Constructor.
|
Factory(int k,
DistanceFunction<? super V> distanceFunction,
List<SpatialSorter> curvegen,
double window,
int variants,
RandomFactory random)
Constructor.
|
KNNJoinMaterializeKNNPreprocessor(Relation<V> relation,
DistanceFunction<? super V> distanceFunction,
int k)
Constructor.
|
MaterializeKNNAndRKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
MaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k)
Constructor with preprocessing step.
|
MetricalIndexApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k)
Constructor
|
PartitionApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k,
int partitions,
RandomFactory rnd)
Constructor
|
RandomSampleKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k,
double share,
RandomFactory rnd)
Constructor.
|
SpacefillingMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k,
List<SpatialSorter> curvegen,
double window,
int variants,
Random random)
Constructor.
|
SpatialApproximationMaterializeKNNPreprocessor(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
int k)
Constructor
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<NV> |
AbstractFilteredPCAIndex.Factory.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
protected DistanceFunction<NV> |
AbstractFilteredPCAIndex.Factory.Parameterizer.pcaDistanceFunction
Holds the instance of the distance function specified by
AbstractFilteredPCAIndex.Factory.PCA_DISTANCE_ID . |
Constructor and Description |
---|
Factory(DistanceFunction<NV> pcaDistanceFunction,
PCAFilteredRunner pca)
Constructor.
|
Factory(DistanceFunction<V> pcaDistanceFunction,
PCAFilteredRunner pca,
int k)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<O> |
SharedNearestNeighborPreprocessor.distanceFunction
Hold the distance function to be used.
|
protected DistanceFunction<O> |
SharedNearestNeighborPreprocessor.Factory.distanceFunction
Hold the distance function to be used.
|
protected DistanceFunction<O> |
SharedNearestNeighborPreprocessor.Factory.Parameterizer.distanceFunction
Hold the distance function to be used.
|
Constructor and Description |
---|
Factory(int numberOfNeighbors,
DistanceFunction<O> distanceFunction)
Constructor.
|
SharedNearestNeighborPreprocessor(Relation<O> relation,
int numberOfNeighbors,
DistanceFunction<O> distanceFunction)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
abstract DistanceFunction<? super O> |
MetricalIndexTree.getDistanceFunction()
Returns the distance function of this metrical index.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O> |
AbstractCoverTree.distanceFunction
Holds the instance of the trees distance function.
|
protected DistanceFunction<? super O> |
AbstractCoverTree.Factory.distanceFunction
Holds the instance of the trees distance function.
|
protected DistanceFunction<? super O> |
AbstractCoverTree.Factory.Parameterizer.distanceFunction
Holds the instance of the trees distance function.
|
Constructor and Description |
---|
AbstractCoverTree(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
double expansion,
int truncate)
Constructor.
|
CoverTree(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
double expansion,
int truncate)
Constructor.
|
Factory(DistanceFunction<? super O> distanceFunction,
double expansion,
int truncate)
Constructor.
|
Factory(DistanceFunction<? super O> distanceFunction,
double expansion,
int truncate)
Constructor.
|
Factory(DistanceFunction<? super O> distanceFunction,
double expansion,
int truncate)
Constructor.
|
SimplifiedCoverTree(Relation<O> relation,
DistanceFunction<? super O> distanceFunction,
double expansion,
int truncate)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected DistanceFunction<? super O> |
MTreeSettings.distanceFunction
Holds the instance of the trees distance function.
|
Modifier and Type | Method and Description |
---|---|
DistanceFunction<? super O> |
AbstractMTree.getDistanceFunction() |
Modifier and Type | Method and Description |
---|---|
static <O> KNNQuery<O> |
DatabaseUtil.precomputedKNNQuery(Database database,
Relation<O> relation,
DistanceFunction<? super O> distf,
int k)
Get (or create) a precomputed kNN query for the database.
|
Constructor and Description |
---|
NaiveAgglomerativeHierarchicalClustering1(DistanceFunction<? super O> distanceFunction,
int numclusters)
Constructor.
|
NaiveAgglomerativeHierarchicalClustering2(DistanceFunction<? super O> distanceFunction,
int numclusters)
Constructor.
|
NaiveAgglomerativeHierarchicalClustering3(DistanceFunction<? super O> distanceFunction,
int numclusters,
NaiveAgglomerativeHierarchicalClustering3.Linkage linkage)
Constructor.
|
NaiveAgglomerativeHierarchicalClustering4(DistanceFunction<? super O> distanceFunction,
NaiveAgglomerativeHierarchicalClustering4.Linkage linkage)
Constructor.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiLPNorm
Tutorial example for ELKI.
|
class |
TutorialDistanceFunction
Tutorial example for ELKI.
|
Constructor and Description |
---|
DistanceStddevOutlier(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
ODIN(DistanceFunction<? super O> distanceFunction,
int k)
Constructor.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.