Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.itemsetmining |
Algorithms for frequent itemset mining such as APRIORI.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.lof |
LOF family of outlier detection algorithms.
|
de.lmu.ifi.dbs.elki.database.datastore.memory |
Memory data store implementation for ELKI.
|
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel |
Kernel functions.
|
de.lmu.ifi.dbs.elki.index.preprocessed.fastoptics |
Preprocessed index used by the FastOPTICS algorithm.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.covertree |
Cover-tree variations.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.kd |
K-d-tree and variants.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.outlier |
Outlier result classes
|
de.lmu.ifi.dbs.elki.utilities |
Utility and helper classes - commonly used data structures, output formatting, exceptions, ...
|
de.lmu.ifi.dbs.elki.utilities.datastructures |
Basic memory structures such as heaps and object hierarchies.
|
de.lmu.ifi.dbs.elki.visualization.gui |
Package to provide a visualization GUI.
|
tutorial.clustering |
Classes from the tutorial on implementing a custom k-means variation.
|
Modifier and Type | Method and Description |
---|---|
protected ArrayModifiableDBIDs |
SNNClustering.findSNNNeighbors(SimilarityQuery<O> snnInstance,
DBIDRef queryObject)
Returns the shared nearest neighbors of the specified query object in the
given database.
|
static ArrayModifiableDBIDs[] |
ClusteringAlgorithmUtil.partitionsFromIntegerLabels(DBIDs ids,
IntegerDataStore assignment,
int k)
Collect clusters from their [0;k-1] integer labels.
|
Modifier and Type | Field and Description |
---|---|
private ArrayModifiableDBIDs |
HiCO.Instance.clusterOrder
Cluster order.
|
private ArrayModifiableDBIDs |
HiCO.Instance.tmpIds
Temporary ids.
|
Modifier and Type | Method and Description |
---|---|
protected int |
GeneralizedDBSCAN.Instance.expandCluster(DBIDRef seed,
int clusterid,
WritableIntegerDataStore clusterids,
T neighbors,
ArrayModifiableDBIDs activeSet,
FiniteProgress progress)
Set-based expand cluster implementation.
|
protected int |
GeneralizedDBSCAN.Instance.processCorePoint(DBIDRef seed,
T newneighbors,
int clusterid,
WritableIntegerDataStore clusterids,
ArrayModifiableDBIDs activeSet)
Process a single core point.
|
Modifier and Type | Method and Description |
---|---|
protected void |
KMedoidsPAM.runPAMOptimization(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment)
Run the PAM optimization phase.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayModifiableDBIDs |
OPTICSList.Instance.candidates
Current list of candidates.
|
protected ArrayModifiableDBIDs |
GeneralizedOPTICS.Instance.candidates
Current list of candidates.
|
(package private) ArrayModifiableDBIDs |
ClusterOrder.ids
Cluster order.
|
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
ClusterOrder.order(DBIDs ids)
Use the cluster order to sort the given collection ids.
|
Constructor and Description |
---|
ClusterOrder(String name,
String shortname,
ArrayModifiableDBIDs ids,
WritableDoubleDataStore reachability,
WritableDBIDDataStore predecessor)
Constructor
|
CorrelationClusterOrder(String name,
String shortname,
ArrayModifiableDBIDs ids,
WritableDoubleDataStore reachability,
WritableDBIDDataStore predecessor,
WritableIntegerDataStore corrdim)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private ArrayModifiableDBIDs |
DiSH.Instance.clusterOrder
Cluster order.
|
private ArrayModifiableDBIDs |
HiSC.Instance.clusterOrder
Cluster order.
|
private ArrayModifiableDBIDs |
DiSH.Instance.tmpIds
Temporary ids.
|
Modifier and Type | Method and Description |
---|---|
private gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> |
DiSH.extractClusters(Relation<V> relation,
DiSH.DiSHClusterOrder clusterOrder)
Extracts the clusters from the cluster order.
|
private Pair<long[],ArrayModifiableDBIDs> |
DiSH.findParent(Relation<V> relation,
Pair<long[],ArrayModifiableDBIDs> child,
gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified cluster
|
Modifier and Type | Method and Description |
---|---|
private Cluster<SubspaceModel> |
DOC.runDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r,
int minClusterSize)
Performs a single run of DOC, finding a single cluster.
|
private Cluster<SubspaceModel> |
DOC.runFastDOC(Database database,
Relation<V> relation,
ArrayModifiableDBIDs S,
int d,
int n,
int m,
int r)
Performs a single run of FastDOC, finding a single cluster.
|
Modifier and Type | Method and Description |
---|---|
private void |
DiSH.checkClusters(Relation<V> relation,
gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Removes the clusters with size < minpts from the cluster map and adds them
to their parents.
|
private Pair<long[],ArrayModifiableDBIDs> |
DiSH.findParent(Relation<V> relation,
Pair<long[],ArrayModifiableDBIDs> child,
gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified cluster
|
private Pair<long[],ArrayModifiableDBIDs> |
DiSH.findParent(Relation<V> relation,
Pair<long[],ArrayModifiableDBIDs> child,
gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns the parent of the specified cluster
|
private List<Cluster<SubspaceModel>> |
DiSH.sortClusters(Relation<V> relation,
gnu.trove.map.hash.TCustomHashMap<long[],List<ArrayModifiableDBIDs>> clustersMap)
Returns a sorted list of the clusters w.r.t. the subspace dimensionality in
descending order.
|
Constructor and Description |
---|
DiSHClusterOrder(String name,
String shortname,
ArrayModifiableDBIDs ids,
WritableDoubleDataStore reachability,
WritableDBIDDataStore predecessor,
WritableIntegerDataStore corrdim,
WritableDataStore<long[]> commonPreferenceVectors)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected List<SparseItemset> |
APRIORI.buildFrequentTwoItemsets(List<OneItemset> oneitems,
Relation<BitVector> relation,
int dim,
int needed,
DBIDs ids,
ArrayModifiableDBIDs survivors)
Build the 2-itemsets.
|
protected List<? extends Itemset> |
APRIORI.frequentItemsets(List<? extends Itemset> candidates,
Relation<BitVector> relation,
int needed,
DBIDs ids,
ArrayModifiableDBIDs survivors,
int length)
Returns the frequent BitSets out of the given BitSets with respect to the
given database.
|
protected List<SparseItemset> |
APRIORI.frequentItemsetsSparse(List<SparseItemset> candidates,
Relation<BitVector> relation,
int needed,
DBIDs ids,
ArrayModifiableDBIDs survivors,
int length)
Returns the frequent BitSets out of the given BitSets with respect to the
given database.
|
Modifier and Type | Method and Description |
---|---|
private ArrayModifiableDBIDs |
OnlineLOF.LOFKNNListener.mergeIDs(List<? extends DoubleDBIDList> queryResults,
DBIDs... ids)
Merges the ids of the query result with the specified ids.
|
Modifier and Type | Method and Description |
---|---|
private void |
ALOCI.ALOCIQuadTree.bulkLoad(double[] lmin,
double[] lmax,
List<ALOCI.Node> children,
ArrayModifiableDBIDs ids,
int start,
int end,
int dim,
int level,
int code)
Bulk load the tree
|
Modifier and Type | Field and Description |
---|---|
private ArrayModifiableDBIDs |
ArrayDBIDStore.data
Data array
|
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
DBIDFactory.newArray()
Make a new (modifiable) array of DBIDs.
|
static ArrayModifiableDBIDs |
DBIDUtil.newArray()
Make a new (modifiable) array of DBIDs.
|
ArrayModifiableDBIDs |
DBIDFactory.newArray(DBIDs existing)
Make a new (modifiable) array of DBIDs.
|
static ArrayModifiableDBIDs |
DBIDUtil.newArray(DBIDs existing)
Make a new (modifiable) array of DBIDs.
|
ArrayModifiableDBIDs |
DBIDFactory.newArray(int size)
Make a new (modifiable) array of DBIDs.
|
static ArrayModifiableDBIDs |
DBIDUtil.newArray(int size)
Make a new (modifiable) array of DBIDs.
|
Modifier and Type | Method and Description |
---|---|
static void |
DBIDUtil.randomShuffle(ArrayModifiableDBIDs ids,
Random random)
Produce a random shuffling of the given DBID array.
|
static void |
DBIDUtil.randomShuffle(ArrayModifiableDBIDs ids,
RandomFactory rnd)
Produce a random shuffling of the given DBID array.
|
static void |
DBIDUtil.randomShuffle(ArrayModifiableDBIDs ids,
Random random,
int limit)
Produce a random shuffling of the given DBID array.
|
Modifier and Type | Class and Description |
---|---|
(package private) class |
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage.
|
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
AbstractIntegerDBIDFactory.newArray() |
ArrayModifiableDBIDs |
AbstractIntegerDBIDFactory.newArray(DBIDs existing) |
ArrayModifiableDBIDs |
AbstractIntegerDBIDFactory.newArray(int size) |
Modifier and Type | Field and Description |
---|---|
(package private) ArrayModifiableDBIDs |
KernelMatrix.SortedArrayMap.ids |
Modifier and Type | Method and Description |
---|---|
int |
RandomProjectedNeighborssAndDensities.splitByDistance(ArrayModifiableDBIDs ind,
int begin,
int end,
DoubleDataStore tpro)
Split the data set by distances.
|
int |
RandomProjectedNeighborssAndDensities.splitRandomly(ArrayModifiableDBIDs ind,
int begin,
int end,
DoubleDataStore tpro)
Split the data set randomly.
|
void |
RandomProjectedNeighborssAndDensities.splitupNoSort(ArrayModifiableDBIDs ind,
int begin,
int end,
int dim)
Recursively splits entire point set until the set is below a threshold
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayModifiableDBIDs |
SimplifiedCoverTree.Node.singletons
Objects in this node.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayModifiableDBIDs |
MinimalisticMemoryKDTree.sorted
The actual "tree" as a sorted array.
|
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
OrderingResult.order(DBIDs ids)
Sort the given ids according to this ordering and return an iterator.
|
ArrayModifiableDBIDs |
OrderingFromDataStore.order(DBIDs ids) |
Modifier and Type | Method and Description |
---|---|
ArrayModifiableDBIDs |
OrderingFromRelation.order(DBIDs ids) |
Modifier and Type | Method and Description |
---|---|
static ArrayModifiableDBIDs |
DatabaseUtil.getObjectsByLabelMatch(Database database,
Pattern name_pattern)
Find object by matching their labels.
|
Modifier and Type | Method and Description |
---|---|
private static void |
QuickSelect.insertionSort(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator,
int start,
int end,
DBIDArrayIter iter1,
DBIDArrayIter iter2)
Sort a small array using repetitive insertion sort.
|
static int |
QuickSelect.median(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator)
Compute the median of an array efficiently using the QuickSelect method.
|
static int |
QuickSelect.median(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator,
int begin,
int end)
Compute the median of an array efficiently using the QuickSelect method.
|
static int |
QuickSelect.quantile(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator,
double quant)
Compute the median of an array efficiently using the QuickSelect method.
|
static int |
QuickSelect.quantile(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator,
int begin,
int end,
double quant)
Compute the median of an array efficiently using the QuickSelect method.
|
static void |
QuickSelect.quickSelect(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator,
int rank)
QuickSelect is essentially quicksort, except that we only "sort" that half
of the array that we are interested in.
|
static void |
QuickSelect.quickSelect(ArrayModifiableDBIDs data,
Comparator<? super DBIDRef> comparator,
int start,
int end,
int rank)
QuickSelect is essentially quicksort, except that we only "sort" that half
of the array that we are interested in.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayModifiableDBIDs |
SelectionTableWindow.dbids
The DBIDs to display
|
Modifier and Type | Method and Description |
---|---|
protected ArrayModifiableDBIDs |
SameSizeKMeansAlgorithm.initialAssignment(List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
DBIDs ids) |
Modifier and Type | Method and Description |
---|---|
protected List<Vector> |
SameSizeKMeansAlgorithm.refineResult(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableDataStore<SameSizeKMeansAlgorithm.Meta> metas,
ArrayModifiableDBIDs tids)
Perform k-means style iterations to improve the clustering result.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.