Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.affinitypropagation |
Affinity Propagation (AP) clustering.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.biclustering |
Biclustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical.extraction |
Extraction of partitional clusterings from hierarchical results.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.meta |
Meta outlier detection algorithms: external scores, score rescaling.
|
de.lmu.ifi.dbs.elki.database.ids |
Database object identification and ID group handling API.
|
de.lmu.ifi.dbs.elki.database.ids.generic |
Database object identification and ID group handling - generic implementations.
|
de.lmu.ifi.dbs.elki.database.ids.integer |
Integer-based DBID implementation --
do not use directly - always use
DBIDUtil . |
de.lmu.ifi.dbs.elki.database.query.knn |
Prepared queries for k nearest neighbor (kNN) queries.
|
de.lmu.ifi.dbs.elki.database.query.rknn |
Prepared queries for reverse k nearest neighbor (rkNN) queries.
|
de.lmu.ifi.dbs.elki.database.relation |
Relations, materialized and virtual (views).
|
de.lmu.ifi.dbs.elki.datasource.bundle |
Object bundles - exchange container for multi-represented objects.
|
de.lmu.ifi.dbs.elki.evaluation.similaritymatrix |
Render a distance matrix to visualize a clustering-distance-combination.
|
de.lmu.ifi.dbs.elki.index.idistance |
iDistance is a distance based indexing technique, using a reference points embedding.
|
de.lmu.ifi.dbs.elki.index.preprocessed.fastoptics |
Preprocessed index used by the FastOPTICS algorithm.
|
de.lmu.ifi.dbs.elki.index.preprocessed.knn |
Indexes providing KNN and rKNN data.
|
de.lmu.ifi.dbs.elki.index.preprocessed.snn |
Indexes providing nearest neighbor sets
|
de.lmu.ifi.dbs.elki.index.projected |
Projected indexes for data.
|
de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query |
Classes for performing queries (knn, range, ...) on metrical trees.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query |
Queries on the R-Tree family of indexes: kNN and range queries.
|
de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.rdknn | |
de.lmu.ifi.dbs.elki.math.dimensionsimilarity |
Functions to compute the similarity of dimensions (or the interestingness of the combination).
|
de.lmu.ifi.dbs.elki.parallel |
Parallel processing core for ELKI.
|
de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike |
Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays.
|
de.lmu.ifi.dbs.elki.utilities.scaling.outlier |
Scaling of Outlier scores, that require a statistical analysis of the occurring values
|
Modifier and Type | Method and Description |
---|---|
double[][] |
DistanceBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
double[][] |
AffinityPropagationInitialization.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids)
Compute the initial similarity matrix.
|
double[][] |
SimilarityBasedInitializationWithMedian.getSimilarityMatrix(Database db,
Relation<O> relation,
ArrayDBIDs ids) |
Modifier and Type | Field and Description |
---|---|
protected ArrayDBIDs |
AbstractBiclustering.rowIDs
The row ids corresponding to the currently set
AbstractBiclustering.relation . |
Modifier and Type | Method and Description |
---|---|
protected ArrayDBIDs |
AbstractBiclustering.rowsBitsetToIDs(BitSet rows)
Convert a bitset into integer row ids.
|
protected ArrayDBIDs |
AbstractBiclustering.rowsBitsetToIDs(long[] rows)
Convert a bitset into integer row ids.
|
Modifier and Type | Field and Description |
---|---|
private ArrayDBIDs |
AbstractHDBSCAN.HDBSCANAdapter.ids
IDs to process.
|
Modifier and Type | Method and Description |
---|---|
private void |
CLINK.clinkstep4567(DBIDRef id,
ArrayDBIDs ids,
DBIDArrayIter it,
int n,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableDoubleDataStore m)
Fourth to seventh step of CLINK: find best insertion
|
protected void |
AbstractHDBSCAN.convertToPointerRepresentation(ArrayDBIDs ids,
DoubleLongHeap heap,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda)
Convert spanning tree to a pointer representation.
|
double |
AbstractHDBSCAN.HDBSCANAdapter.distance(ArrayDBIDs data,
int ip,
int iq) |
protected void |
SLINK.process(DBIDRef id,
ArrayDBIDs ids,
DBIDArrayIter it,
int n,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableDoubleDataStore m)
SLINK main loop.
|
protected void |
CLINK.process(DBIDRef id,
ArrayDBIDs ids,
DBIDArrayIter it,
int n,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableDoubleDataStore m)
CLINK main loop, based on the SLINK main loop.
|
int |
AbstractHDBSCAN.HDBSCANAdapter.size(ArrayDBIDs data) |
Constructor and Description |
---|
HDBSCANAdapter(ArrayDBIDs ids,
DoubleDataStore coredists,
DistanceQuery<?> distq)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
private int |
ExtractFlatClusteringFromHierarchy.findSplit(ArrayDBIDs order,
DBIDArrayIter it,
DoubleDataStore lambda)
Find the splitting point in the ordered DBIDs list.
|
Modifier and Type | Method and Description |
---|---|
protected double |
CLARA.assignRemainingToNearestCluster(ArrayDBIDs means,
DBIDs ids,
DBIDs rids,
WritableIntegerDataStore assignment,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected double |
KMedoidsPAM.assignToNearestCluster(ArrayDBIDs means,
DBIDs ids,
WritableDoubleDataStore nearest,
WritableDoubleDataStore second,
WritableIntegerDataStore assignment,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected boolean |
KMedoidsEM.assignToNearestCluster(ArrayDBIDs means,
Mean[] mdist,
List<? extends ModifiableDBIDs> clusters,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
ClusterOrder.getDBIDs() |
Modifier and Type | Method and Description |
---|---|
private ArrayDBIDs |
PROCLUS.computeM_current(DBIDs m,
DBIDs m_best,
DBIDs m_bad,
Random random)
Computes the set of medoids in current iteration.
|
private ArrayDBIDs |
PROCLUS.greedy(DistanceQuery<V> distFunc,
DBIDs sampleSet,
int m,
Random random)
Returns a piercing set of k medoids from the specified sample set.
|
private ArrayDBIDs |
PROCLUS.initialSet(DBIDs sampleSet,
int k,
Random random)
Returns a set of k elements from the specified sample set.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<PROCLUS.PROCLUSCluster> |
PROCLUS.assignPoints(ArrayDBIDs m_current,
long[][] dimensions,
Relation<V> database)
Assigns the objects to the clusters.
|
private DBIDs |
PROCLUS.computeBadMedoids(ArrayDBIDs m_current,
ArrayList<PROCLUS.PROCLUSCluster> clusters,
int threshold)
Computes the bad medoids, where the medoid of a cluster with less than the
specified threshold of objects is bad.
|
private long[][] |
PROCLUS.findDimensions(ArrayDBIDs medoids,
Relation<V> database,
DistanceQuery<V> distFunc,
RangeQuery<V> rangeQuery)
Determines the set of correlated dimensions for each medoid in the
specified medoid set.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCS.buildOneDimIndexes(Relation<? extends NumberVector> relation)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
Modifier and Type | Method and Description |
---|---|
private void |
HiCS.calculateContrast(Relation<? extends NumberVector> relation,
HiCS.HiCSSubspace subspace,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Calculates the actual contrast of a given subspace.
|
private Set<HiCS.HiCSSubspace> |
HiCS.calculateSubspaces(Relation<? extends NumberVector> relation,
ArrayList<ArrayDBIDs> subspaceIndex,
Random random)
Identifies high contrast subspaces in a given full-dimensional database.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection.
|
interface |
ArrayStaticDBIDs
Unmodifiable, indexed DBIDs.
|
interface |
DBID
Database ID object.
|
interface |
DBIDRange
Static DBID range.
|
interface |
DBIDVar
(Persistent) variable storing a DBID reference.
|
Modifier and Type | Class and Description |
---|---|
class |
EmptyDBIDs
Empty DBID collection.
|
Modifier and Type | Method and Description |
---|---|
static ArrayDBIDs |
DBIDUtil.ensureArray(DBIDs ids)
Ensure that the given DBIDs are array-indexable.
|
static ArrayDBIDs[] |
DBIDUtil.randomSplit(DBIDs oids,
int p,
Random random)
Randomly split IDs into
p partitions of almost-equal size. |
static ArrayDBIDs[] |
DBIDUtil.randomSplit(DBIDs ids,
int p,
RandomFactory rnd)
Randomly split IDs into
p partitions of almost-equal size. |
ArrayDBIDs |
EmptyDBIDs.slice(int begin,
int end) |
ArrayDBIDs |
ArrayDBIDs.slice(int begin,
int end)
Slice a subarray (as view, not copy!)
|
Modifier and Type | Class and Description |
---|---|
class |
UnmodifiableArrayDBIDs
Unmodifiable wrapper for DBIDs.
|
Modifier and Type | Field and Description |
---|---|
protected ArrayDBIDs |
MaskedDBIDs.data
Data storage.
|
private ArrayDBIDs |
UnmodifiableArrayDBIDs.inner
The DBIDs we wrap.
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
UnmodifiableArrayDBIDs.slice(int begin,
int end) |
Constructor and Description |
---|
MaskedDBIDs(ArrayDBIDs data,
long[] bits,
boolean inverse)
Constructor.
|
UnmodifiableArrayDBIDs(ArrayDBIDs inner)
Constructor.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IntegerArrayDBIDs
Trivial combination interface.
|
(package private) interface |
IntegerArrayStaticDBIDs
Combination of
ArrayStaticDBIDs and IntegerDBIDs . |
Modifier and Type | Class and Description |
---|---|
(package private) class |
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage.
|
private class |
ArrayModifiableIntegerDBIDs.Slice
Slice of an array.
|
(package private) class |
ArrayStaticIntegerDBIDs
Static (no modifications allowed) set of Database Object IDs.
|
private class |
ArrayStaticIntegerDBIDs.Slice
Slice of an array.
|
(package private) class |
IntegerDBID
Database ID object.
|
(package private) class |
IntegerDBIDRange
Representing a DBID range allocation.
|
(package private) class |
IntegerDBIDVar
Variable for storing a single DBID reference.
|
class |
UnmodifiableIntegerArrayDBIDs
Unmodifiable wrapper for DBIDs.
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
IntegerDBID.slice(int begin,
int end) |
ArrayDBIDs |
IntegerDBIDVar.slice(int begin,
int end) |
ArrayDBIDs |
IntegerDBIDRange.slice(int begin,
int end) |
Modifier and Type | Method and Description |
---|---|
List<? extends KNNList> |
KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method
|
List<KNNList> |
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
LinearScanEuclideanDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
LinearScanDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends KNNList> |
AbstractDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
private void |
LinearScanDistanceKNNQuery.linearScanBatchKNN(ArrayDBIDs ids,
List<KNNHeap> heaps)
Linear batch knn for arbitrary distance functions.
|
Modifier and Type | Method and Description |
---|---|
List<? extends DoubleDBIDList> |
LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends DoubleDBIDList> |
PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends DoubleDBIDList> |
RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k)
Bulk query method for reverse k nearest neighbors for ids.
|
Modifier and Type | Method and Description |
---|---|
static double[][] |
RelationUtil.relationAsMatrix(Relation<? extends NumberVector> relation,
ArrayDBIDs ids)
Copy a relation into a double matrix.
|
Modifier and Type | Field and Description |
---|---|
private ArrayDBIDs |
MultipleObjectsBundle.ids
DBIDs for these objects, but may be null.
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
MultipleObjectsBundle.getDBIDs()
Get the DBIDs, may be
null . |
Modifier and Type | Method and Description |
---|---|
void |
MultipleObjectsBundle.setDBIDs(ArrayDBIDs ids)
Set the DBID range for this bundle.
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayDBIDs |
ComputeSimilarityMatrixImage.SimilarityMatrix.ids
The database IDs used
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
ComputeSimilarityMatrixImage.SimilarityMatrix.getIDs()
Get the IDs
|
Constructor and Description |
---|
SimilarityMatrix(RenderedImage img,
Relation<?> relation,
ArrayDBIDs ids)
Constructor
|
Modifier and Type | Field and Description |
---|---|
private ArrayDBIDs |
InMemoryIDistanceIndex.referencepoints
Reference points.
|
Modifier and Type | Method and Description |
---|---|
protected static <O> DoubleIntPair[] |
InMemoryIDistanceIndex.rankReferencePoints(DistanceQuery<O> distanceQuery,
O obj,
ArrayDBIDs referencepoints)
Sort the reference points by distance to the query object
|
Modifier and Type | Field and Description |
---|---|
(package private) ArrayList<ArrayDBIDs> |
RandomProjectedNeighborssAndDensities.splitsets
sets that resulted from recursive split of entire point set
|
Modifier and Type | Method and Description |
---|---|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedkNN(List<? extends KNNList> extract,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
protected ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.affectedRkNN(List<? extends Collection<DoubleDBIDPair>> extract,
DBIDs remove)
Extracts and removes the DBIDs in the given collections.
|
private ArrayDBIDs |
MaterializeKNNPreprocessor.updateKNNsAfterDeletion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids.
|
private ArrayDBIDs |
MaterializeKNNPreprocessor.updateKNNsAfterInsertion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids.
|
private ArrayDBIDs |
MaterializeKNNAndRKNNPreprocessor.updateKNNsAndRkNNs(DBIDs ids)
Updates the kNNs and RkNNs after insertion of the specified ids.
|
Modifier and Type | Method and Description |
---|---|
List<KNNList> |
SpacefillingKNNPreprocessor.SpaceFillingKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
NaiveProjectedKNNPreprocessor.NaiveProjectedKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
private void |
MaterializeKNNAndRKNNPreprocessor.materializeKNNAndRKNNs(ArrayDBIDs ids,
FiniteProgress progress)
Materializes the kNNs and RkNNs of the specified object IDs.
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
SharedNearestNeighborIndex.getNearestNeighborSet(DBIDRef id)
Get the precomputed nearest neighbors
|
ArrayDBIDs |
SharedNearestNeighborPreprocessor.getNearestNeighborSet(DBIDRef objid) |
Modifier and Type | Method and Description |
---|---|
List<? extends KNNList> |
ProjectedIndex.ProjectedKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<? extends DoubleDBIDList> |
ProjectedIndex.ProjectedRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
List<? extends DoubleDBIDList> |
MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
List<KNNList> |
EuclideanRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
List<KNNList> |
RStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
int k) |
Modifier and Type | Method and Description |
---|---|
private void |
RdKNNTree.adjustKNNDistance(RdKNNEntry entry,
ArrayDBIDs ids,
List<? extends KNNList> knnLists)
Adjusts the knn distance in the subtree of the specified root entry.
|
Modifier and Type | Method and Description |
---|---|
private ArrayList<ArrayDBIDs> |
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector> relation,
DBIDs ids,
DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
ModifiableArray of every DBID in the database for every dimension and
stores them in a list
|
Modifier and Type | Method and Description |
---|---|
private double |
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector> relation,
DBIDs subset,
ArrayDBIDs subspaceIndex1,
ArrayDBIDs subspaceIndex2,
int dim1,
int dim2,
Random random)
Calculates the actual contrast of a given subspace
|
Modifier and Type | Field and Description |
---|---|
private ArrayDBIDs |
ParallelExecutor.BlockArrayRunner.ids
Array IDs to process
|
Modifier and Type | Method and Description |
---|---|
ArrayDBIDs |
ParallelExecutor.BlockArrayRunner.call() |
Constructor and Description |
---|
BlockArrayRunner(ArrayDBIDs ids,
int start,
int end,
Processor[] procs)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
DBID |
ArrayDBIDsAdapter.get(ArrayDBIDs array,
int off)
Deprecated.
|
int |
ArrayDBIDsAdapter.size(ArrayDBIDs array) |
Modifier and Type | Method and Description |
---|---|
private double[] |
SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a,
double b,
ArrayDBIDs ids,
long[] t,
DoubleRelation scores)
M-Step using a modified Levenberg-Marquardt method.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.