Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical |
Hierarchical agglomerative clustering (HAC).
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.parallel |
Parallelized implementations of k-means.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.optics |
OPTICS family of clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.uncertain |
Clustering algorithms for uncertain data.
|
de.lmu.ifi.dbs.elki.algorithm.outlier |
Outlier detection algorithms
|
de.lmu.ifi.dbs.elki.database.datastore |
General data store layer API (along the lines of
Map<DBID, T> - use everywhere!) |
de.lmu.ifi.dbs.elki.database.datastore.memory |
Memory data store implementation for ELKI.
|
de.lmu.ifi.dbs.elki.parallel.processor |
Processor API of ELKI, and some essential shared processors.
|
Modifier and Type | Field and Description |
---|---|
private WritableIntegerDataStore |
HiCO.Instance.correlationValue
Correlation value.
|
private WritableIntegerDataStore |
HiCO.Instance.tmpCorrelation
Temporary storage of correlation values.
|
Modifier and Type | Method and Description |
---|---|
protected int |
GeneralizedDBSCAN.Instance.expandCluster(DBIDRef seed,
int clusterid,
WritableIntegerDataStore clusterids,
T neighbors,
ArrayModifiableDBIDs activeSet,
FiniteProgress progress)
Set-based expand cluster implementation.
|
protected int |
LSDBC.expandCluster(int clusterid,
WritableIntegerDataStore clusterids,
KNNQuery<O> knnq,
DBIDs neighbors,
double maxkdist,
FiniteProgress progress)
Set-based expand cluster implementation.
|
protected int |
GeneralizedDBSCAN.Instance.processCorePoint(DBIDRef seed,
T newneighbors,
int clusterid,
WritableIntegerDataStore clusterids,
ArrayModifiableDBIDs activeSet)
Process a single core point.
|
Modifier and Type | Method and Description |
---|---|
protected int |
AnderbergHierarchicalClustering.findMerge(int size,
double[] scratch,
DBIDArrayIter ix,
DBIDArrayIter iy,
double[] bestd,
int[] besti,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableIntegerDataStore csize)
Perform the next merge step.
|
protected int |
AGNES.findMerge(int size,
double[] scratch,
DBIDArrayIter ix,
DBIDArrayIter iy,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableIntegerDataStore csize)
Perform the next merge step in AGNES.
|
protected void |
AnderbergHierarchicalClustering.merge(int size,
double[] scratch,
DBIDArrayIter ix,
DBIDArrayIter iy,
double[] bestd,
int[] besti,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableIntegerDataStore csize,
double mindist,
int x,
int y)
Execute the cluster merge.
|
protected void |
AGNES.merge(int size,
double[] scratch,
DBIDArrayIter ix,
DBIDArrayIter iy,
WritableDBIDDataStore pi,
WritableDoubleDataStore lambda,
WritableIntegerDataStore csize,
double mindist,
int x,
int y)
Execute the cluster merge.
|
protected void |
AnderbergHierarchicalClustering.updateMatrix(int size,
double[] scratch,
DBIDArrayIter ij,
double[] bestd,
int[] besti,
WritableDoubleDataStore lambda,
WritableIntegerDataStore csize,
double mindist,
int x,
int y,
int sizex,
int sizey)
Update the scratch distance matrix.
|
protected void |
AGNES.updateMatrix(int size,
double[] scratch,
DBIDArrayIter ij,
WritableDoubleDataStore lambda,
WritableIntegerDataStore csize,
double mindist,
int x,
int y,
int sizex,
int sizey)
Update the scratch distance matrix.
|
Modifier and Type | Method and Description |
---|---|
protected double |
CLARA.assignRemainingToNearestCluster(ArrayDBIDs means,
DBIDs ids,
DBIDs rids,
WritableIntegerDataStore assignment,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected double |
KMedoidsPAM.assignToNearestCluster(ArrayDBIDs means,
DBIDs ids,
WritableDoubleDataStore nearest,
WritableDoubleDataStore second,
WritableIntegerDataStore assignment,
DistanceQuery<V> distQ)
Returns a list of clusters.
|
protected boolean |
AbstractKMeans.assignToNearestCluster(Relation<? extends V> relation,
List<? extends NumberVector> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
protected boolean |
KMeansBatchedLloyd.assignToNearestCluster(Relation<V> relation,
DBIDs ids,
List<? extends NumberVector> oldmeans,
double[][] meanshift,
int[] changesize,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
private int |
KMeansElkan.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
double[][] cdist,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.assignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] sep,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansElkan.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
private int |
KMeansHamerly.initialAssignToNearestCluster(Relation<V> relation,
List<Vector> means,
List<Vector> sums,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower)
Reassign objects, but only if their bounds indicate it is necessary to do
so.
|
protected boolean |
AbstractKMeans.macQueenIterate(Relation<V> relation,
List<Vector> means,
List<ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Perform a MacQueen style iteration.
|
protected void |
KMedoidsPAM.runPAMOptimization(DistanceQuery<V> distQ,
DBIDs ids,
ArrayModifiableDBIDs medoids,
WritableIntegerDataStore assignment)
Run the PAM optimization phase.
|
protected boolean |
AbstractKMeans.updateAssignment(DBIDIter iditer,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
int newA) |
protected boolean |
KMeansBatchedLloyd.updateAssignment(DBIDIter id,
V fv,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[][] meanshift,
int[] changesize,
int minIndex)
Update the assignment of a single object.
|
private void |
KMeansElkan.updateBounds(Relation<V> relation,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDataStore<double[]> lower,
double[] move)
Update the bounds for k-means.
|
private void |
KMeansHamerly.updateBounds(Relation<V> relation,
WritableIntegerDataStore assignment,
WritableDoubleDataStore upper,
WritableDoubleDataStore lower,
double[] move,
double delta)
Update the bounds for k-means.
|
private boolean |
AbstractKMeans.updateMeanAndAssignment(List<ModifiableDBIDs> clusters,
List<Vector> means,
int minIndex,
V fv,
DBIDIter iditer,
WritableIntegerDataStore assignment)
Try to update the cluster assignment.
|
Modifier and Type | Field and Description |
---|---|
(package private) WritableIntegerDataStore |
KMeansProcessor.assignment
Assignment storage.
|
private WritableIntegerDataStore |
KMeansProcessor.Instance.assignment
Cluster assignment storage.
|
Constructor and Description |
---|
Instance(Relation<V> relation,
NumberVectorDistanceFunction<? super V> distance,
WritableIntegerDataStore assignment,
List<? extends NumberVector> means)
Constructor.
|
KMeansProcessor(Relation<V> relation,
NumberVectorDistanceFunction<? super V> distance,
WritableIntegerDataStore assignment,
double[] varsum)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected WritableIntegerDataStore |
CorrelationClusterOrder.correlationValue
The correlation dimension.
|
Constructor and Description |
---|
CorrelationClusterOrder(String name,
String shortname,
ArrayModifiableDBIDs ids,
WritableDoubleDataStore reachability,
WritableDBIDDataStore predecessor,
WritableIntegerDataStore corrdim)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
private WritableIntegerDataStore |
DiSH.Instance.correlationValue
Correlation value.
|
private WritableIntegerDataStore |
HiSC.Instance.correlationValue
Correlation dimensionality.
|
private WritableIntegerDataStore |
DiSH.Instance.tmpCorrelation
Temporary storage of correlation values.
|
Constructor and Description |
---|
DiSHClusterOrder(String name,
String shortname,
ArrayModifiableDBIDs ids,
WritableDoubleDataStore reachability,
WritableDBIDDataStore predecessor,
WritableIntegerDataStore corrdim,
WritableDataStore<long[]> commonPreferenceVectors)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
protected boolean |
UKMeans.assignToNearestCluster(Relation<DiscreteUncertainObject> relation,
List<Vector> means,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
double[] varsum)
Returns a list of clusters.
|
protected boolean |
UKMeans.updateAssignment(DBIDIter iditer,
List<? extends ModifiableDBIDs> clusters,
WritableIntegerDataStore assignment,
int newA)
Update the cluster assignment.
|
Modifier and Type | Method and Description |
---|---|
private int |
DWOF.updateSizes(DBIDs ids,
WritableDataStore<ModifiableDBIDs> labels,
WritableIntegerDataStore newSizes)
This method updates each object's cluster size after the clustering step.
|
Modifier and Type | Method and Description |
---|---|
static WritableIntegerDataStore |
DataStoreUtil.makeIntegerStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableIntegerDataStore |
DataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
static WritableIntegerDataStore |
DataStoreUtil.makeIntegerStorage(DBIDs ids,
int hints,
int def)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
WritableIntegerDataStore |
DataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints,
int def)
Make a new storage, to associate the given ids with an object of class
dataclass.
|
Modifier and Type | Class and Description |
---|---|
class |
ArrayIntegerStore
A class to answer representation queries using the stored Array.
|
class |
MapIntegerDBIDIntegerStore
Writable data store for double values.
|
Modifier and Type | Method and Description |
---|---|
WritableIntegerDataStore |
MemoryDataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints) |
WritableIntegerDataStore |
MemoryDataStoreFactory.makeIntegerStorage(DBIDs ids,
int hints,
int def) |
Modifier and Type | Field and Description |
---|---|
(package private) WritableIntegerDataStore |
WriteIntegerDataStoreProcessor.store
Store to write to
|
Constructor and Description |
---|
WriteIntegerDataStoreProcessor(WritableIntegerDataStore store)
Constructor.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.