Package | Description |
---|---|
de.lmu.ifi.dbs.elki.algorithm.clustering |
Clustering algorithms.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.correlation |
Correlation clustering algorithms
|
de.lmu.ifi.dbs.elki.algorithm.clustering.gdbscan |
Generalized DBSCAN.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans |
K-means clustering and variations.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.meta |
Meta clustering algorithms, that get their result from other clusterings or external sources.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.subspace |
Axis-parallel subspace clustering algorithms
The clustering algorithms in this package are instances of both, projected clustering algorithms or
subspace clustering algorithms according to the classical but somewhat obsolete classification schema
of clustering algorithms for axis-parallel subspaces.
|
de.lmu.ifi.dbs.elki.algorithm.clustering.trivial |
Trivial clustering algorithms: all in one, no clusters, label clusterings
These methods are mostly useful for providing a reference result in evaluation.
|
de.lmu.ifi.dbs.elki.algorithm.outlier.trivial |
Trivial outlier detection algorithms: no outliers, all outliers, label outliers.
|
de.lmu.ifi.dbs.elki.data |
Basic classes for different data types, database object types and label types.
|
de.lmu.ifi.dbs.elki.data.model |
Cluster models classes for various algorithms.
|
de.lmu.ifi.dbs.elki.data.synthetic.bymodel |
Generator using a distribution model specified in an XML configuration file.
|
de.lmu.ifi.dbs.elki.data.type |
Data type information, also used for type restrictions.
|
de.lmu.ifi.dbs.elki.datasource.parser |
Parsers for different file formats and data types.
|
de.lmu.ifi.dbs.elki.evaluation.clustering |
Evaluation of clustering results.
|
de.lmu.ifi.dbs.elki.evaluation.outlier |
Evaluate an outlier score using a misclassification based cost model.
|
de.lmu.ifi.dbs.elki.result |
Result types, representation and handling
|
de.lmu.ifi.dbs.elki.result.textwriter |
Text serialization (CSV, Gnuplot, Console, ...)
|
de.lmu.ifi.dbs.elki.visualization |
Visualization package of ELKI.
|
de.lmu.ifi.dbs.elki.visualization.opticsplot |
Code for drawing OPTICS plots
|
de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster |
Visualizers for clustering results based on 2D projections.
|
de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj |
Visualizers that do not use a particular projection.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusteringAlgorithm<C extends Clustering<? extends Model>>
Interface for Algorithms that are capable to provide a
Clustering as Result. in general, clustering algorithms are supposed to
implement the Algorithm -Interface. |
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
SNNClustering.run(Database database,
Relation<O> relation)
Perform SNN clustering
|
Clustering<Model> |
DBSCAN.run(Relation<O> relation)
Performs the DBSCAN algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
CASH.doRun(Relation<ParameterizationFunction> relation,
FiniteProgress progress)
Runs the CASH algorithm on the specified database, this method is
recursively called until only noise is left.
|
Clustering<Model> |
LMCLUS.run(Database database,
Relation<NumberVector> relation)
The main LMCLUS (Linear manifold clustering algorithm) is processed in this
method.
|
Clustering<Model> |
CASH.run(Database database,
Relation<V> vrel)
Run CASH on the relation.
|
Clustering<Model> |
ORCLUS.run(Database database,
Relation<V> relation)
Performs the ORCLUS algorithm on the given database.
|
Modifier and Type | Method and Description |
---|---|
private List<List<Cluster<CorrelationModel<V>>>> |
ERiC.extractCorrelationClusters(Clustering<Model> dbscanResult,
Relation<V> database,
int dimensionality,
ERiCNeighborPredicate.Instance npred)
Extracts the correlation clusters and noise from the copac result and
returns a mapping of correlation dimension to maps of clusters within this
correlation dimension.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
GeneralizedDBSCAN.Instance.run()
Run the actual GDBSCAN algorithm.
|
Clustering<Model> |
GeneralizedDBSCAN.run(Database database) |
Clustering<Model> |
LSDBC.run(Database database,
Relation<O> relation)
Run the LSDBC algorithm
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKMeans<V extends NumberVector,M extends Model>
Abstract base class for k-means implementations.
|
interface |
KMeans<V extends NumberVector,M extends Model>
Some constants and options shared among kmeans family algorithms.
|
Modifier and Type | Method and Description |
---|---|
Clustering<? extends Model> |
ExternalClustering.run(Database database)
Run the algorithm.
|
Modifier and Type | Method and Description |
---|---|
private List<Cluster<Model>> |
SUBCLU.runDBSCAN(Relation<V> relation,
DBIDs ids,
Subspace subspace)
Runs the DBSCAN algorithm on the specified partition of the database in the
given subspace.
|
Modifier and Type | Method and Description |
---|---|
private Subspace |
SUBCLU.bestSubspace(List<Subspace> subspaces,
Subspace candidate,
TreeMap<Subspace,List<Cluster<Model>>> clusterMap)
Determines the
d -dimensional subspace of the (d+1)
-dimensional candidate with minimal number of objects in the cluster. |
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByLabelHierarchicalClustering.run(Database database) |
Clustering<Model> |
ByLabelClustering.run(Database database) |
Clustering<Model> |
ByLabelOrAllInOneClustering.run(Database database) |
Clustering<Model> |
ByLabelHierarchicalClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllNoise.run(Relation<?> relation) |
Clustering<Model> |
ByLabelClustering.run(Relation<?> relation)
Run the actual clustering algorithm.
|
Clustering<Model> |
TrivialAllInOne.run(Relation<?> relation) |
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
Clustering<Model> |
ByModelClustering.run(Relation<Model> relation)
Run the actual clustering algorithm.
|
Modifier and Type | Method and Description |
---|---|
OutlierResult |
TrivialGeneratedOutlier.run(Relation<Model> models,
Relation<NumberVector> vecs,
Relation<?> labels)
Run the algorithm
|
Modifier and Type | Class and Description |
---|---|
class |
Cluster<M extends Model>
Generic cluster class, that may or not have hierarchical information.
|
class |
Clustering<M extends Model>
Result class for clusterings.
|
Modifier and Type | Field and Description |
---|---|
private M |
Cluster.model
Cluster model.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractModel
Abstract base class for Cluster Models.
|
class |
BiclusterModel
Wrapper class to provide the basic properties of a Bicluster.
|
class |
BiclusterWithInversionsModel
This code was factored out of the Bicluster class, since not all biclusters
have inverted rows.
|
class |
ClusterModel
Generic cluster model.
|
class |
CoreObjectsModel
Cluster model using "core" objects.
|
class |
CorrelationAnalysisSolution<V extends NumberVector>
A solution of correlation analysis is a matrix of equations describing the
dependencies.
|
class |
CorrelationModel<V extends FeatureVector<?>>
Cluster model using a filtered PCA result and an centroid.
|
class |
DendrogramModel
Model for dendrograms, provides the distance to the child cluster.
|
class |
DimensionModel
Cluster model just providing a cluster dimensionality.
|
class |
EMModel
Cluster model of an EM cluster, providing a mean and a full covariance
Matrix.
|
class |
KMeansModel
Trivial subclass of the
MeanModel that indicates the clustering to be
produced by k-means (so the Voronoi cell visualization is sensible). |
class |
LinearEquationModel
Cluster model containing a linear equation system for the cluster.
|
class |
MeanModel
Cluster model that stores a mean for the cluster.
|
class |
MedoidModel
Cluster model that stores a mean for the cluster.
|
class |
OPTICSModel
Model for an OPTICS cluster
|
class |
PrototypeModel<V>
Cluster model that stores a prototype for each cluster.
|
class |
SubspaceModel
Model for Subspace Clusters.
|
Modifier and Type | Method and Description |
---|---|
static NumberVector |
ModelUtil.getPrototype(Model model,
Relation<? extends NumberVector> relation)
Get the representative vector for a cluster model.
|
static <V extends NumberVector> |
ModelUtil.getPrototype(Model model,
Relation<? extends V> relation,
NumberVector.Factory<V> factory)
Get (and convert!)
|
static NumberVector |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends NumberVector> relation,
DBIDs ids)
Get the representative vector for a cluster model, or compute the centroid.
|
static <V extends NumberVector> |
ModelUtil.getPrototypeOrCentroid(Model model,
Relation<? extends V> relation,
DBIDs ids,
NumberVector.Factory<V> factory)
Get the representative vector for a cluster model, or compute the centroid.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneratorSingleCluster
Class to generate a single cluster according to a model as well as getting
the density of a given model at that point (to evaluate generated points
according to the same model)
|
Modifier and Type | Method and Description |
---|---|
Model |
GeneratorInterface.makeModel()
Make a cluster model for this cluster.
|
Model |
GeneratorStatic.makeModel() |
Model |
GeneratorSingleCluster.makeModel()
Make a cluster model for this cluster.
|
Modifier and Type | Field and Description |
---|---|
static SimpleTypeInformation<Model> |
TypeUtil.MODEL
Cluster model type.
|
Modifier and Type | Field and Description |
---|---|
(package private) Clustering<Model> |
ClusteringVectorParser.curclu
Current clustering.
|
Modifier and Type | Method and Description |
---|---|
static <C extends Model> |
LogClusterSizes.logClusterSizes(Clustering<C> c)
Log the cluster sizes of a clustering.
|
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
OutlierThresholdClustering.split(OutlierResult or) |
Modifier and Type | Method and Description |
---|---|
static List<Clustering<? extends Model>> |
ResultUtil.getClusteringResults(Result r)
Collect all clustering results from a Result
|
Modifier and Type | Method and Description |
---|---|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
private DoubleObjPair<Polygon> |
KMLOutputHandler.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls,
Relation<? extends NumberVector> coords)
Recursively step through the clusters to build the hulls.
|
private void |
KMLOutputHandler.writeClusteringResult(XMLStreamWriter xmlw,
Clustering<Model> clustering,
Database database) |
Modifier and Type | Method and Description |
---|---|
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
private void |
TextWriter.writeClusterResult(Database db,
StreamFactory streamOpener,
Clustering<Model> clustering,
Cluster<Model> clus,
List<Relation<?>> ra,
NamingScheme naming) |
Modifier and Type | Method and Description |
---|---|
private Clustering<Model> |
VisualizerContext.generateDefaultClustering()
Generate a default (fallback) clustering.
|
Modifier and Type | Method and Description |
---|---|
static <E extends ClusterOrder> |
OPTICSCut.makeOPTICSCut(E co,
double epsilon)
Compute an OPTICS cut clustering
|
Modifier and Type | Method and Description |
---|---|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private double |
ClusterHullVisualization.Instance.addRecursively(ArrayList<Vector> hull,
Hierarchy<Cluster<Model>> hier,
Cluster<Model> clus)
Recursively add a cluster and its children.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
private DoubleObjPair<Polygon> |
ClusterHullVisualization.Instance.buildHullsRecursively(Cluster<Model> clu,
Hierarchy<Cluster<Model>> hier,
Map<Object,DoubleObjPair<Polygon>> hulls)
Recursively step through the clusters to build the hulls.
|
Modifier and Type | Method and Description |
---|---|
protected static <M extends Model> |
KeyVisualization.findDepth(Clustering<M> c)
Compute the size of the clustering.
|
private static <M extends Model> |
KeyVisualization.findDepth(Hierarchy<Cluster<M>> hier,
Cluster<M> cluster,
int[] size)
Recursive depth computation.
|
Modifier and Type | Method and Description |
---|---|
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
private double |
KeyVisualization.Instance.drawHierarchy(SVGPlot svgp,
MarkerLibrary ml,
DoubleDoublePair size,
DoubleDoublePair pos,
int depth,
Cluster<Model> cluster,
gnu.trove.map.TObjectIntMap<Cluster<Model>> cnum,
Hierarchy<Cluster<Model>> hier) |
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.