| Package | Description |
|---|---|
| de.lmu.ifi.dbs.elki.datasource.filter.normalization.columnwise |
Normalizations operating on columns / variates; where each column is treated independently.
|
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator |
Estimators for statistical distributions.
|
| de.lmu.ifi.dbs.elki.math.statistics.distribution.estimator.meta |
Meta estimators: estimators that do not actually estimate themselves, but instead use other estimators, e.g. on a trimmed data set, or as an ensemble.
|
| Class and Description |
|---|
| DistributionEstimator
Estimate distribution parameters from a sample.
|
| Class and Description |
|---|
| AbstractExpMADEstimator
Abstract base class for estimators based on the median and MAD.
|
| AbstractLMMEstimator
Abstract base class for L-Moments based estimators (LMM).
|
| AbstractLogMADEstimator
Abstract base class for estimators based on the median and MAD.
|
| AbstractLogMeanVarianceEstimator
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
| AbstractLogMOMEstimator
Abstract base class for estimators based on the statistical moments.
|
| AbstractMADEstimator
Abstract base class for estimators based on the median and MAD.
|
| AbstractMeanVarianceEstimator
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
| AbstractMOMEstimator
Abstract base class for estimators based on the statistical moments.
|
| CauchyMADEstimator
Estimate Cauchy distribution parameters using Median and MAD.
|
| DistributionEstimator
Estimate distribution parameters from a sample.
|
| EMGOlivierNorbergEstimator
Naive distribution estimation using mean and sample variance.
|
| ExpMADDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in
exponentiated data.
|
| ExponentialLMMEstimator
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
| ExponentialMADEstimator
Estimate Exponential distribution parameters using Median and MAD.
|
| ExponentialMedianEstimator
Estimate Exponential distribution parameters using Median and MAD.
|
| ExponentialMOMEstimator
Estimate Exponential distribution parameters using the mean, which is the
maximum-likelihood estimate (MLE), but not very robust.
|
| GammaChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
| GammaLMMEstimator
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
| GammaMADEstimator
Robust parameter estimation for the Gamma distribution.
|
| GammaMOMEstimator
Simple parameter estimation for the Gamma distribution.
|
| GeneralizedExtremeValueLMMEstimator
Estimate the parameters of a Generalized Extreme Value Distribution, using
the methods of L-Moments (LMM).
|
| GeneralizedLogisticAlternateLMMEstimator
Estimate the parameters of a Generalized Logistic Distribution, using the
methods of L-Moments (LMM).
|
| GeneralizedParetoLMMEstimator
Estimate the parameters of a Generalized Pareto Distribution (GPD), using the
methods of L-Moments (LMM).
|
| GumbelLMMEstimator
Estimate the parameters of a Gumbel Distribution, using the methods of
L-Moments (LMM).
|
| GumbelMADEstimator
Parameter estimation via median and median absolute deviation from median
(MAD).
|
| LaplaceLMMEstimator
Estimate Laplace distribution parameters using the method of L-Moments (LMM).
|
| LaplaceMADEstimator
Estimate Laplace distribution parameters using Median and MAD.
|
| LaplaceMLEEstimator
Estimate Laplace distribution parameters using Median and mean deviation from
median.
|
| LMMDistributionEstimator
Interface for distribution estimators based on the methods of L-Moments
(LMM).
|
| LogGammaAlternateExpMADEstimator
Robust parameter estimation for the LogGamma distribution.
|
| LogGammaChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
| LogGammaLogMADEstimator
Robust parameter estimation for the LogGamma distribution.
|
| LogGammaLogMOMEstimator
Simple parameter estimation for the Gamma distribution.
|
| LogisticLMMEstimator
Estimate the parameters of a Logistic Distribution, using the methods of
L-Moments (LMM).
|
| LogisticMADEstimator
Estimate Logistic distribution parameters using Median and MAD.
|
| LogLogisticMADEstimator
Estimate Logistic distribution parameters using Median and MAD.
|
| LogMADDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace.
|
| LogMOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace,
i.e. that only need the statistical moments of a data set after logarithms.
|
| LogNormalBilkovaLMMEstimator
Alternate estimate the parameters of a log Gamma Distribution, using the
methods of L-Moments (LMM) for the Generalized Normal Distribution.
|
| LogNormalLevenbergMarquardtKDEEstimator
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
| LogNormalLMMEstimator
Estimate the parameters of a log Normal Distribution, using the methods of
L-Moments (LMM) for the Generalized Normal Distribution.
|
| LogNormalLogMADEstimator
Estimator using Medians.
|
| LogNormalLogMOMEstimator
Naive distribution estimation using mean and sample variance.
|
| MADDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
| MeanVarianceDistributionEstimator
Interface for estimators that only need mean and variance.
|
| MOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
| NormalLevenbergMarquardtKDEEstimator
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
| NormalLMMEstimator
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
| NormalMADEstimator
Estimator using Medians.
|
| NormalMOMEstimator
Naive maximum-likelihood estimations for the normal distribution using mean
and sample variance.
|
| RayleighLMMEstimator
Estimate the scale parameter of a (non-shifted) RayleighDistribution using
the method of L-Moments (LMM).
|
| RayleighMADEstimator
Estimate the parameters of a RayleighDistribution using the MAD.
|
| RayleighMLEEstimator
Estimate the scale parameter of a (non-shifted) RayleighDistribution using a
maximum likelihood estimate.
|
| SkewGNormalLMMEstimator
Estimate the parameters of a skew Normal Distribution (Hoskin's Generalized
Normal Distribution), using the methods of L-Moments (LMM).
|
| UniformEnhancedMinMaxEstimator
Slightly improved estimation, that takes sample size into account and
enhances the interval appropriately.
|
| UniformLMMEstimator
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
| UniformMADEstimator
Estimate Uniform distribution parameters using Median and MAD.
|
| UniformMinMaxEstimator
Estimate the uniform distribution by computing min and max.
|
| WaldMLEstimator
Estimate parameter of the Wald distribution.
|
| WaldMOMEstimator
Estimate parameter of the Wald distribution.
|
| WeibullLMMEstimator
Estimate parameters of the Weibull distribution using the method of L-Moments
(LMM).
|
| WeibullLogMADEstimator
Parameter estimation via median and median absolute deviation from median
(MAD).
|
| WeibullLogMOMEstimator
Naive parameter estimation via least squares.
|
| Class and Description |
|---|
| DistributionEstimator
Estimate distribution parameters from a sample.
|
| LMMDistributionEstimator
Interface for distribution estimators based on the methods of L-Moments
(LMM).
|
| LogMADDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace.
|
| LogMOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM) in logspace,
i.e. that only need the statistical moments of a data set after logarithms.
|
| MADDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
| MOMDistributionEstimator
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.