See: Description
Interface | Description |
---|---|
DistributionEstimator<D extends Distribution> |
Estimate distribution parameters from a sample.
|
ExpMADDistributionEstimator<D extends Distribution> |
Distribuition estimators that use the method of moments (MOM) in
exponentiated data.
|
LMMDistributionEstimator<D extends Distribution> |
Interface for distribution estimators based on the methods of L-Moments
(LMM).
|
LogMADDistributionEstimator<D extends Distribution> |
Distribuition estimators that use the method of moments (MOM) in logspace.
|
LogMOMDistributionEstimator<D extends Distribution> |
Distribuition estimators that use the method of moments (MOM) in logspace,
i.e. that only need the statistical moments of a data set after logarithms.
|
MADDistributionEstimator<D extends Distribution> |
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
MeanVarianceDistributionEstimator<D extends Distribution> |
Interface for estimators that only need mean and variance.
|
MOMDistributionEstimator<D extends Distribution> |
Distribuition estimators that use the method of moments (MOM), i.e. that only
need the statistical moments of a data set.
|
Class | Description |
---|---|
AbstractExpMADEstimator<D extends Distribution> |
Abstract base class for estimators based on the median and MAD.
|
AbstractLMMEstimator<D extends Distribution> |
Abstract base class for L-Moments based estimators (LMM).
|
AbstractLogMADEstimator<D extends Distribution> |
Abstract base class for estimators based on the median and MAD.
|
AbstractLogMeanVarianceEstimator<D extends Distribution> |
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
AbstractLogMOMEstimator<D extends Distribution> |
Abstract base class for estimators based on the statistical moments.
|
AbstractMADEstimator<D extends Distribution> |
Abstract base class for estimators based on the median and MAD.
|
AbstractMeanVarianceEstimator<D extends Distribution> |
Estimators that work on Mean and Variance only (i.e. the first two moments
only).
|
AbstractMOMEstimator<D extends Distribution> |
Abstract base class for estimators based on the statistical moments.
|
CauchyMADEstimator |
Estimate Cauchy distribution parameters using Median and MAD.
|
CauchyMADEstimator.Parameterizer |
Parameterization class.
|
EMGOlivierNorbergEstimator |
Naive distribution estimation using mean and sample variance.
|
EMGOlivierNorbergEstimator.Parameterizer |
Parameterization class.
|
ExponentialLMMEstimator |
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
ExponentialLMMEstimator.Parameterizer |
Parameterization class.
|
ExponentialMADEstimator |
Estimate Exponential distribution parameters using Median and MAD.
|
ExponentialMADEstimator.Parameterizer |
Parameterization class.
|
ExponentialMedianEstimator |
Estimate Exponential distribution parameters using Median and MAD.
|
ExponentialMedianEstimator.Parameterizer |
Parameterization class.
|
ExponentialMOMEstimator |
Estimate Exponential distribution parameters using the mean, which is the
maximum-likelihood estimate (MLE), but not very robust.
|
ExponentialMOMEstimator.Parameterizer |
Parameterization class.
|
GammaChoiWetteEstimator |
Estimate distribution parameters using the method by Choi and Wette.
|
GammaChoiWetteEstimator.Parameterizer |
Parameterization class.
|
GammaLMMEstimator |
Estimate the parameters of a Gamma Distribution, using the methods of
L-Moments (LMM).
|
GammaLMMEstimator.Parameterizer |
Parameterization class.
|
GammaMADEstimator |
Robust parameter estimation for the Gamma distribution.
|
GammaMADEstimator.Parameterizer |
Parameterization class.
|
GammaMOMEstimator |
Simple parameter estimation for the Gamma distribution.
|
GammaMOMEstimator.Parameterizer |
Parameterization class.
|
GeneralizedExtremeValueLMMEstimator |
Estimate the parameters of a Generalized Extreme Value Distribution, using
the methods of L-Moments (LMM).
|
GeneralizedExtremeValueLMMEstimator.Parameterizer |
Parameterization class.
|
GeneralizedLogisticAlternateLMMEstimator |
Estimate the parameters of a Generalized Logistic Distribution, using the
methods of L-Moments (LMM).
|
GeneralizedLogisticAlternateLMMEstimator.Parameterizer |
Parameterization class.
|
GeneralizedParetoLMMEstimator |
Estimate the parameters of a Generalized Pareto Distribution (GPD), using the
methods of L-Moments (LMM).
|
GeneralizedParetoLMMEstimator.Parameterizer |
Parameterization class.
|
GumbelLMMEstimator |
Estimate the parameters of a Gumbel Distribution, using the methods of
L-Moments (LMM).
|
GumbelLMMEstimator.Parameterizer |
Parameterization class.
|
GumbelMADEstimator |
Parameter estimation via median and median absolute deviation from median
(MAD).
|
GumbelMADEstimator.Parameterizer |
Parameterization class.
|
LaplaceLMMEstimator |
Estimate Laplace distribution parameters using the method of L-Moments (LMM).
|
LaplaceLMMEstimator.Parameterizer |
Parameterization class.
|
LaplaceMADEstimator |
Estimate Laplace distribution parameters using Median and MAD.
|
LaplaceMADEstimator.Parameterizer |
Parameterization class.
|
LaplaceMLEEstimator |
Estimate Laplace distribution parameters using Median and mean deviation from
median.
|
LaplaceMLEEstimator.Parameterizer |
Parameterization class.
|
LogGammaAlternateExpMADEstimator |
Robust parameter estimation for the LogGamma distribution.
|
LogGammaAlternateExpMADEstimator.Parameterizer |
Parameterization class.
|
LogGammaChoiWetteEstimator |
Estimate distribution parameters using the method by Choi and Wette.
|
LogGammaChoiWetteEstimator.Parameterizer |
Parameterization class.
|
LogGammaLogMADEstimator |
Robust parameter estimation for the LogGamma distribution.
|
LogGammaLogMADEstimator.Parameterizer |
Parameterization class.
|
LogGammaLogMOMEstimator |
Simple parameter estimation for the Gamma distribution.
|
LogGammaLogMOMEstimator.Parameterizer |
Parameterization class.
|
LogisticLMMEstimator |
Estimate the parameters of a Logistic Distribution, using the methods of
L-Moments (LMM).
|
LogisticLMMEstimator.Parameterizer |
Parameterization class.
|
LogisticMADEstimator |
Estimate Logistic distribution parameters using Median and MAD.
|
LogisticMADEstimator.Parameterizer |
Parameterization class.
|
LogLogisticMADEstimator |
Estimate Logistic distribution parameters using Median and MAD.
|
LogLogisticMADEstimator.Parameterizer |
Parameterization class.
|
LogNormalBilkovaLMMEstimator |
Alternate estimate the parameters of a log Gamma Distribution, using the
methods of L-Moments (LMM) for the Generalized Normal Distribution.
|
LogNormalBilkovaLMMEstimator.Parameterizer |
Parameterization class.
|
LogNormalLevenbergMarquardtKDEEstimator |
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
LogNormalLevenbergMarquardtKDEEstimator.Parameterizer |
Parameterization class.
|
LogNormalLMMEstimator |
Estimate the parameters of a log Normal Distribution, using the methods of
L-Moments (LMM) for the Generalized Normal Distribution.
|
LogNormalLMMEstimator.Parameterizer |
Parameterization class.
|
LogNormalLogMADEstimator |
Estimator using Medians.
|
LogNormalLogMADEstimator.Parameterizer |
Parameterization class.
|
LogNormalLogMOMEstimator |
Naive distribution estimation using mean and sample variance.
|
LogNormalLogMOMEstimator.Parameterizer |
Parameterization class.
|
NormalLevenbergMarquardtKDEEstimator |
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
NormalLevenbergMarquardtKDEEstimator.Parameterizer |
Parameterization class.
|
NormalLMMEstimator |
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
NormalLMMEstimator.Parameterizer |
Parameterization class.
|
NormalMADEstimator |
Estimator using Medians.
|
NormalMADEstimator.Parameterizer |
Parameterization class.
|
NormalMOMEstimator |
Naive maximum-likelihood estimations for the normal distribution using mean
and sample variance.
|
NormalMOMEstimator.Parameterizer |
Parameterization class.
|
RayleighLMMEstimator |
Estimate the scale parameter of a (non-shifted) RayleighDistribution using
the method of L-Moments (LMM).
|
RayleighLMMEstimator.Parameterizer |
Parameterization class.
|
RayleighMADEstimator |
Estimate the parameters of a RayleighDistribution using the MAD.
|
RayleighMADEstimator.Parameterizer |
Parameterization class.
|
RayleighMLEEstimator |
Estimate the scale parameter of a (non-shifted) RayleighDistribution using a
maximum likelihood estimate.
|
RayleighMLEEstimator.Parameterizer |
Parameterization class.
|
SkewGNormalLMMEstimator |
Estimate the parameters of a skew Normal Distribution (Hoskin's Generalized
Normal Distribution), using the methods of L-Moments (LMM).
|
SkewGNormalLMMEstimator.Parameterizer |
Parameterization class.
|
UniformEnhancedMinMaxEstimator |
Slightly improved estimation, that takes sample size into account and
enhances the interval appropriately.
|
UniformEnhancedMinMaxEstimator.Parameterizer |
Parameterization class.
|
UniformLMMEstimator |
Estimate the parameters of a normal distribution using the method of
L-Moments (LMM).
|
UniformLMMEstimator.Parameterizer |
Parameterization class.
|
UniformMADEstimator |
Estimate Uniform distribution parameters using Median and MAD.
|
UniformMADEstimator.Parameterizer |
Parameterization class.
|
UniformMinMaxEstimator |
Estimate the uniform distribution by computing min and max.
|
UniformMinMaxEstimator.Parameterizer |
Parameterization class.
|
WaldMLEstimator |
Estimate parameter of the Wald distribution.
|
WaldMLEstimator.Parameterizer |
Parameterization class.
|
WaldMOMEstimator |
Estimate parameter of the Wald distribution.
|
WaldMOMEstimator.Parameterizer |
Parameterization class.
|
WeibullLMMEstimator |
Estimate parameters of the Weibull distribution using the method of L-Moments
(LMM).
|
WeibullLMMEstimator.Parameterizer |
Parameterization class.
|
WeibullLogMADEstimator |
Parameter estimation via median and median absolute deviation from median
(MAD).
|
WeibullLogMADEstimator.Parameterizer |
Parameterization class.
|
WeibullLogMOMEstimator |
Naive parameter estimation via least squares.
|
WeibullLogMOMEstimator.Parameterizer |
Parameterization class.
|
Copyright © 2015 ELKI Development Team, Lehr- und Forschungseinheit für Datenbanksysteme, Ludwig-Maximilians-Universität München. License information.